期刊文献+

基于TRIZ创新理论的新型高压损防堵水嘴 被引量:5

Study on high pressure loss anti-blocking water nozzle based on TRIZ innovation theory
下载PDF
导出
摘要 为了在有限空间内探索具有大通流面积、高压损特性的注水嘴,使其在注水过程中保证配水精度的同时具有良好的防堵能力,应用TRIZ创新理论对具有高压损、防堵特性的分层注水水嘴进行了深入分析和优化设计。通过功能及冲突矩阵分析,利用结构嵌套法对水嘴结构进行优化,并设计出具有嵌套形式的新型绕流对冲水嘴。通过数值模拟方法对新型水嘴的压损特性进行分析,结果显示,新型水嘴可在保证截面面积较大(不小于传统?4.0 mm直孔的通流面积)的情况下提供优于传统?2.0 mm直孔水嘴的压损特性,从而可在保证配水准确性的同时提升防堵能力,提高水嘴的免维护周期。 It is aimed at exploring the water injection nozzle which is characterized by large flow area and high pressure loss inlimited space,so as to ensure water allocation accuracy and good anti-blocking capacity in the process of water flooding recovery.TheTRIZ innovation theory was applied to perform thorough analysis and optimal design on separate layer water injection nozzle which hasthe performance of high pressure loss anti-blocking.Based on function and collision matrix analysis,the water nozzle was structurallyoptimized by means of the structure nesting method,and a novel bypass reverse water nozzle with the nesting form was designed.Andits pressure loss characteristic was analyzed by using numerical simulation.It is indicated that this novel water nozzle is superior to thetraditional?2.0mm straight hole nozzle in term of pressure loss characteristic while its cross section area is remained larger(not smallerthan the flow area of traditional?4.0mm straight hole).And thus,the anti-blocking capacity of the water nozzle is improved and itsmaintenance free cycle is extended while the accuracy of water allocation is guaranteed.
作者 田辉 邹克武 王文成 刘春哲 李大伟 TIAN Hui;ZOU Kewu;WANG Wencheng;LIU Chunzhe;LI Dawei(Chengde Petroleum College, Chengde 067000, Hebei, China)
出处 《石油钻采工艺》 CAS CSCD 北大核心 2017年第5期658-661,共4页 Oil Drilling & Production Technology
基金 河北省自然科学基金项目"离心泵空化演变机理分析及其对水动力性能的影响研究"(编号:E2016411008) 河北省高等学校科学技术研究项目"具有高压损特性的防堵分层注水系列水嘴的设计及实验研究"(编号:QN2016245)
关键词 分层注水 高压水嘴 TRIZ 数值模拟 separate layer water injection high-pressure water nozzle TRIZ numerical simulation
  • 相关文献

参考文献6

二级参考文献40

  • 1左献军,郭新宇,吴载全,张庆.注入水质对油田注水的影响[J].油气田地面工程,2006,25(5):21-21. 被引量:12
  • 2张兄文,李国君,李军.离心泵蜗壳内部非定常流动的数值模拟[J].农业机械学报,2006,37(6):63-68. 被引量:27
  • 3任永良,常玉连,邢宝海,高胜,张瑞杰,王晶.油田注水管柱水力模型的建立与求解[J].系统仿真学报,2007,19(7):1468-1470. 被引量:7
  • 4侯守探.常规偏心分层注水改进技术研究[J].石油天然气学报,2007,29(2):112-113. 被引量:41
  • 5Gonzalez J, Fernandez Jn, Blanco E, et al. Numerical simulation of the dynamic effects due to impeller-volute interaction in a centrifugal pump[J]. ASME Journal of Fluids Engineering, 2002, 124(2) : 348-355.
  • 6Dong R R. The effect of volute geometry on the flow structure, pressue fluctuation and noise in a centrifugal pump[D]. Baltimore, Maryland: Johns Hopkins University, 1994.
  • 7Eisele K, Zhang Z, Casey M V, et al. Flow analysis in a pump diffuser-part Ⅰ: LDA and PIV measurements of the unsteady flow[J]. ASME Journal of Fluids Engineering, 1997, 119(4):968-977.
  • 8Longatte F, Kueny J L. Analysis of rotor-stator-circuit interactions in a centrifugal pump [C] // 3rd ASME/JSME Joint Fluids Engineering Conference, 1999.
  • 9Majidi K. Numerical study of unsteady flow in a centrifugal pump[J]. ASME Journal of Turbomachinery, 2005, 127(2) : 363- 371.
  • 10SY/T5906-2003,配水嘴嘴损曲线图版制作方法[S].

共引文献251

同被引文献41

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部