摘要
In the present work, the gas flow pressure drop and gas–solid heat transfer characteristics in sinter bed layer of vertical tank were studied experimentally on the basis of the homemade experimental setup. The gas flow pressure drop through the sinter bed layer was measured with different gas velocity and particle diameters, as well as the sinter and air temperatures. The influences of gas superficial velocity and particle diameter on the gas flow pressure drop and gas solid heat transfer in sinter bed layer were analyzed in detail. The revised Ergun's correlation and gas solid heat transfer correlation were obtained according to the regression analysis of experimental data. It is found that, the pressure drop of unit bed layer height gradually increases as a quadratic relationship with increasing the gas superficial velocity, and decreases as an exponential relationship with the increase of sinter particle diameter. For a given sinter temperature, the heat transfer coefficient in sinter bed layer increases with increasing the gas superficial velocity, and increases with decreasing the sinter particle diameter. In addition, the heat transfer coefficient also gradually increases with increasing the sinter temperature at the same gas superficial velocity and sinter particle diameter. The mean deviations between the experimental data obtained from this work and the values calculated by the revised Ergun's correlation and the experimental heat transfer correlation are 7.22% and 4.22% respectively, showing good prediction.
In the present work, the gas flow pressure drop and gas–solid heat transfer characteristics in sinter bed layer of vertical tank were studied experimentally on the basis of the homemade experimental setup. The gas flow pressure drop through the sinter bed layer was measured with different gas velocity and particle diameters, as well as the sinter and air temperatures. The influences of gas superficial velocity and particle diameter on the gas flow pressure drop and gas solid heat transfer in sinter bed layer were analyzed in detail. The revised Ergun's correlation and gas solid heat transfer correlation were obtained according to the regression analysis of experimental data. It is found that, the pressure drop of unit bed layer height gradually increases as a quadratic relationship with increasing the gas superficial velocity, and decreases as an exponential relationship with the increase of sinter particle diameter. For a given sinter temperature, the heat transfer coefficient in sinter bed layer increases with increasing the gas superficial velocity, and increases with decreasing the sinter particle diameter. In addition, the heat transfer coefficient also gradually increases with increasing the sinter temperature at the same gas superficial velocity and sinter particle diameter. The mean deviations between the experimental data obtained from this work and the values calculated by the revised Ergun's correlation and the experimental heat transfer correlation are 7.22% and 4.22% respectively, showing good prediction.
基金
Project(51274065)supported by the National Natural Science Foundation of China
Project(2015020074)supported by the Science and Technology Planning Project of Liaoning Province,China