期刊文献+

Real-time rear-end crash potential prediction on freeways 被引量:2

Real-time rear-end crash potential prediction on freeways
下载PDF
导出
摘要 This study develops new real-time freeway rear-end crash potential predictors using support vector machine(SVM) technique. The relationship between rear-end crash occurrences and traffic conditions were explored using historical loop detector data from Interstate-894 in Milwaukee, Wisconsin, USA. The extracted loop detection data were aggregated over different stations and time intervals to produce explanatory features. A feature selection process, which addresses the interaction between SVM classifiers and explanatory features, was adopted to identify the features that significantly influence rear-end crashes. Afterwards, the identified significant explanatory features over three separate time levels were used to train three SVM models. In the end, the multi-layer perceptron(MLP) artificial neural network models were used as benchmarks to evaluate the performance of SVM models. The results show that the proposed feature selection procedure greatly enhances the accuracy and generalization capability of SVM models. Moreover, the optimal SVM classifier achieves 81.1% overall prediction precision rate. In comparison with MLP artificial neural networks, SVM models provide better results in terms of crash prediction accuracy and false positive rate, which confirms the superior performance of SVM technique in rear-end crash potential prediction analysis. This study develops new real-time freeway rear-end crash potential predictors using support vector machine(SVM) technique. The relationship between rear-end crash occurrences and traffic conditions were explored using historical loop detector data from Interstate-894 in Milwaukee, Wisconsin, USA. The extracted loop detection data were aggregated over different stations and time intervals to produce explanatory features. A feature selection process, which addresses the interaction between SVM classifiers and explanatory features, was adopted to identify the features that significantly influence rear-end crashes. Afterwards, the identified significant explanatory features over three separate time levels were used to train three SVM models. In the end, the multi-layer perceptron(MLP) artificial neural network models were used as benchmarks to evaluate the performance of SVM models. The results show that the proposed feature selection procedure greatly enhances the accuracy and generalization capability of SVM models. Moreover, the optimal SVM classifier achieves 81.1% overall prediction precision rate. In comparison with MLP artificial neural networks, SVM models provide better results in terms of crash prediction accuracy and false positive rate, which confirms the superior performance of SVM technique in rear-end crash potential prediction analysis.
作者 曲栩 王炜 王文夫 刘攀 QU Xu;WANG Wei;WANG Wen-fu;LIU Pan
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第11期2664-2673,共10页 中南大学学报(英文版)
基金 Project(BK20160685)supported by the Science Foundation of Jiangsu Province,China Project(61620106002)supported by the National Natural Science Foundation of China
关键词 FREEWAY rear-end CRASH CRASH POTENTIAL PREDICTION CRASH precursors case control strategy support vector machine freeway rear-end crash crash potential prediction crash precursors case control strategy support vector machine
  • 相关文献

同被引文献13

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部