期刊文献+

磷酸铁锂电池储能系统防环流技术探讨

Discussion on Anti-circulation Technology of Lithium Iron Phosphate Battery Energy Storage System
下载PDF
导出
摘要 本文针对磷酸铁锂电池储能系统防环流技术进行深入探讨,基于储能系统中电路拓扑结构的特性以及原理,对采取防环流技术的原因、增加预充电电阻、双级模块型PCS和单级模块型PCS等进行分析,对磷酸铁锂电池储能系统电路防环流技术的各种措施、技术特性及优缺点进行比较,旨在促进防环流技术应用水平的发展。 In this paper,the anti-circulation technology of lithium iron phosphate battery energy storage system is discussed.Based on the characteristics and the principle of the circuit topology in the energy storage system,this paper analyzes the reasons for the anti-circulation technology,increasing the pre-charge resistance,the Double module PCS and the single module PCS,etc.,compares the various measures,technical characteristics,advantages and disadvantages of the anti-circulation technology of lithium iron phosphate battery energy storage system,aiming to promote the development of the application level of the circulation technology.
作者 来秋茹 丁文革 Lai Qiuru;Ding Wenge(Guizhou Meiling Power Supply CO., LTD, Guizhou, 563000;Military Representative Office of the Zero Six One Base, Guizhou,550000)
出处 《当代化工研究》 2017年第8期17-18,共2页 Modern Chemical Research
关键词 磷酸铁锂电池 储能系统 防环流技术 lithium iron phosphate battery energy storage system anti - circulation technology
  • 相关文献

参考文献3

二级参考文献35

  • 1童亦斌,吴峂,金新民,陈瑶.双向DC/DC变换器的拓扑研究[J].中国电机工程学报,2007,27(13):81-86. 被引量:125
  • 2ZHANG W, LIU D W. Nitrogen-treated hierarchical macro-/ mesoporous Ti02 used as anode materials for lithium ion batteries with high performance at elevated temperatures [J]. Electrochimica Acta, 2015,156: 53-59.
  • 3YANG H, ZHUANG G V, ROSS P N Jr. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6 [J]. Journal of Power Sources, 2006,161: 573-579.
  • 4SHIEH D T, HSIEH P H, YANG M H. Effect of mixed LiBOB and LiPF 6 salts on electrochemical and thermal properties in LiMn204 batteries [J]. Journal of Power Sources, 2007, 174: 663-667.
  • 5MAROM R, HAIK 0, AURBACH D, HALALAY I C. Revisiting LiCl04 as an electrolyte for rechargeable lithium-ion batteries [J]. Journal of The Electrochemical Society, 2010, 157(8): A972-A983.
  • 6SMITH J W, LAM R K, SHEARDY A T, SHIH 0, RIZZUTO AM, BORODIN 0, HARRIS S J, PRENDERGAST D, SAYKALLY R J. X-Ray absorption spectroscopy of LiBF4 in propylene carbonate: A model lithium ion battery electrolyte [J]. Physical Chemistry Chemical Physic, 2014, 16: 23568-23575.
  • 7ZAINAL N, IDRIS R, SABIRIN M N. Studies of ENR-50 and LiN(S02CF3)2 electrolyte system [J]. Advanced Materials Research, 2012,545:303-307.
  • 8ABOUIMRANE A, DING J, DAVIDSON I J. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations [J]. Journal of Power Sources, 2009, 189: 693-696.
  • 9ZINIGRAD E, LEVI E, TELLER H, G. SALITRAG, AURBAUH D, DAN P. Investigation of lithium electrodeposits formed in practical rechargeable Li-LixMn02 batteries based on LiAsF6DIl ,3-dioxolane solutions [J]. Journal of the Electrochemical Society, 2004, 151(1): AIII-AII8.
  • 10MATSUMOTO K, INOUE K, NAKAHARA K, YUGE R, NOGUCHI T, UTSUGI K. Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte [J]. Journal of Power Sources, 2013,231: 234-238.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部