期刊文献+

基于SVM的工控系统安全等级评估方法研究

Research on security-level evaluation method of industrial control system based on SVM
下载PDF
导出
摘要 针对传统的工控系统安全等级评估方法过多依赖专家经验的不足,文章将安全等级评估问题看作是机器学习中的分类问题,提出了面向工业控制系统的安全等级评估要素体系、评估要素量化方法,并将评估要素作为分类特征在训练数据集上训练分类模型,使用分类模型实现安全等级的自动评估。实验表明,所提出的方法体系可行有效,使用支持向量机算法训练的模型在山西省工业企业工控系统安全等级评估中的分类准确率达到了90%,较好地解决了传统方法过多依赖专家的问题。 Due to the deficiency of traditional security-level evaluation methods of industrial control system relying too much on the experience of experts.This paper puts forward the evaluation factor system and evaluation factor quantitative methods for industrial control system,which regards the security-level evaluation as a classification problem in machine learning field.The classification model is trained on the training data set of taking the evaluation factors as the classification features,and the security level is automatically evaluated by using the classification model.The experiment shows that the precision of the classification model based on support vector machine reaches90%in security-level evaluation of industrial control system of ShanXi province.The deficiency of traditional methods relying too much on the experience of experts is solved by the method mentioned above.
作者 苏雪峰 郭燕萍 Su Xuefeng;Guo Yanping(Department of Electronic Business, Business college of ShanXi university, Taiyuan, Shanxi 030031, China)
出处 《计算机时代》 2017年第12期46-49,共4页 Computer Era
基金 山西省科技厅平台建设项目(2014091018) 山西省信息化基金项目(20150801) 山西大学商务学院科研基金项目(2016012)
关键词 安全等级评估 评估要素 支持向量机 机器学习 评估模型 security-level evaluation evaluation factor support vector machine machine learning evaluation model
  • 相关文献

参考文献5

二级参考文献38

  • 1冯登国,张阳,张玉清.信息安全风险评估综述[J].通信学报,2004,25(7):10-18. 被引量:308
  • 2李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 3赵冬梅,张玉清,马建峰.网络安全的综合风险评估[J].计算机科学,2004,31(7):66-69. 被引量:23
  • 4于冬.基于BP神经网络的风险投资评估模型[J].科技管理研究,2005,25(9):206-208. 被引量:6
  • 5Li Zhifeng. Using support vector machines to enhance the performance of bayesian face recognition [J]. IEEE Transactions on Information Forensics and Security, 2007, 2(2) : 174-180.
  • 6Singh Y, Kaur A, Malhotra R. Application of support vector machine to predict fault prone classes[J]. ACM, SIGSOFT Software Engineering Notes, 2009, 34(1) : 1 -6.
  • 7Franc V, Lsakov P, Miiller K R. Stopping conditions for exact computation of leave-one out error in support vector machines[C]//ACM Proceedings of the 25th International Conference on Machine Learning. Helsinki: ACM, 2008: 328-335.
  • 8Dlamini M T, Eloff J H P, Eloff M M. Information security: the moving target[J]. Computers & Security, 2009, 28(1): 189 198.
  • 9GB/T20984--2007信息安全技术信息安全风险评估规范[s].北京:中国标准出版社,2007.
  • 10Satty T L. The Analytic Hierarchy Process [M]. New York, USA: McGraw-Hill Companies, 1980.

共引文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部