期刊文献+

不确定多智能体系统的鲁棒量化一致性研究

Research on robust quantized consensusof multi-agent systems with uncertainties
下载PDF
导出
摘要 采用滑模控制设计方法考虑了多智能体系统的鲁棒量化一致性问题。将多智能体系统的滑模面设计由考虑匹配不确定的情形推广到同时带有匹配和不匹配不确定性的情形,并采用线性矩阵不等式技术给出滑模面参数的求解方法。针对数字通信通道编解码的特点,充分考虑了量化参数不匹配和外部干扰等多种不利因素的影响,提出一种新的滑模到达控制律确保闭环系统能在有限时间到达设计的滑模面,实现量化一致性的目标。经计算机仿真实验比较验证了本设计方法的有效性。 Based on slidingmode control design approach,the robust quantized consensus problem of multi-agent systems are investigated in this paper.Firstly,the design of the sliding surface of the multi-agent systems with matched/mismatcheduncertainties are studied,and the surface parameters are solved by utilization of linear matrix inequality techniques.This is a more general result compared with the existing sliding surface design of the multi-agent systems with matched uncertainty.Secondly,according to the coding and decoding characteristics of the digital communication channel,the impacts of quantization parameter mismatch and external disturbances are fully considered,and a novel sliding mode reaching control law is proposed in this paper,which guarantees the designed sliding surface can be reached in finite time and the goal of quantized consensus is achieved.Finally,the effectiveness of the proposed method is verified via simulation comparison.
作者 李昆 郑柏超 钟露 LI Kun;ZHENG Bochao;ZHONG Lu(School of Information and Control, Nanjing University of Information Science and Technology, Nanjing 210044, China;Collaborative Innovation Center for Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第24期48-54,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61403207 No.61573189 No.61503190) 中国国家博士后基金(No.2015M580380) 江苏省博士后基金(No.1501041B)
关键词 多智能体系统 滑模控制 量化一致性 不确定性 multi-agent systems sliding mode control quantized consensus uncertainties
  • 相关文献

参考文献3

二级参考文献23

  • 1Middleton R,Goodwin G C,Hill D J,et al.Design issues in adaptive control[J].IEEE Transactions on Automatic Control,1988,33(1):50-58.
  • 2Hespanha J P,Liberzon D,Morse A S.Overcoming the limitations of adaptive control by means of logic-based switching[J].Systems&Control Letters,2003,49(1):49-65.
  • 3Hespanha J P,Liberzon D,Morse A S.Logic-based switching control of nonholonomic system with parametric modeling uncertainty[J].Systems&Control Letters,1999,38(3):167-177.
  • 4Hespanha J P,Liberzon D,Morse A S.Hysteresis-based switching algorithms for supervisory control of uncertain systems[J].Automatica,2003,39:263-272.
  • 5Baldi S,Battistelli G,Mosca E,et al.Multi-model unfalsified adaptive switching supervisory control[J].Automatica,2010,46(2):249-259.
  • 6Wai R J,Ze Y,Chuang K L,et al.On-line supervisory control design for maglev transportation system via total sliding-mode approach and particle swarm optimization[J].IEEE Transactions on Automatic Control,2010,55(7):1544-1559.
  • 7Liberzon D.Hybrid feedback stabilization of systems with quantized signals[J].Automatica,2003,39(9):1543-1554.
  • 8Fu M,Xie L.The sector bound approach to quantized feedback control[J].IEEE Transactions on Automatic Control,2005,50(11):1698-1711.
  • 9Che W W,Yang G H.H∞filter design for continuous time systems with quantised signals[J].International Journal of Systems Science,2013,44(2):265-274.
  • 10Zou Y,Niu Y,Chen B,et al.Networked predictive control of constrained linear systems with input quantization[J].International Journal of Systems Science,2013,44(10):1970-1982.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部