期刊文献+

可提高多样性的基于重排序图书推荐算法研究 被引量:5

Improving Aggregate Recommendation Diversity of Books Using Ranking-Based Techniques
下载PDF
导出
摘要 通过提供个性化推荐,推荐系统的重要性越来越受到读者的重视。现有推荐算法着重关注推荐的准确度,将读者引导到少数热点图书上,导致产生较多长尾图书的问题;并且读者的兴趣过于集中,不利于挖掘读者潜在的兴趣点。提出一种重排序的基于用户协同过滤算法,该算法通过对推荐列表TOP-N进行重排序来产生推荐列表。实验结果表明,该算法可以在一定精确度损失的条件下,大幅提高最终推荐列表的多样性有利于读者接触更多的未知领域及长尾图书的销售。 The importance of Recommender systems is becoming more and more to readers by providing personalized recommendations.The existing recommendation algorithms that focus on recommendation accuracy will misguide readers to a few hot books,thus creating many long-tail books.As a result,the excessive concentration of reader interest is unfavorable for excavation of potential points of interest.The paper proposed a reranking user-based collaborative filtering algorithm,which generated a new recommendation list via reranking of TOP-N on the original list.The experimental results showed that this algorithm could greatly improve the diversity of the final recommendation list at the sacrifice of certain accuracy.This algorithm helped readers to know more previously unknown fields as well as the borrowing of long-tail books.
作者 钟足峰 段尧清 杨曼 Zhong Zufeng;Duan Yaoqing;Yang Man(School of Information Management, Central China Normal University, Wuhan 430079;Library, Lingnan Normal University, Zhanjiang 524048, China)
出处 《现代情报》 CSSCI 北大核心 2017年第12期59-63,共5页 Journal of Modern Information
基金 国家社会科学基金重点项目资助"基于全生命周期的政府开放数据整合利用机制与模式研究"(项目编号:17ATQ006)
关键词 推荐系统 协同过滤 多样性 长尾图书 recommender system collaborative filtering diversity long-tail book
  • 相关文献

参考文献8

二级参考文献128

  • 1佘正炜,钱松荣.基于神经网络的文本倾向性分析系统的研究[J].微型电脑应用,2011(12):20-23. 被引量:2
  • 2张巍,刘鲁,朱艳春.在线信誉系统研究现状与展望[J].控制与决策,2005,20(11):1201-1207. 被引量:20
  • 3张林东.一颗长势良好的“豆瓣”[J].上海信息化,2007(5):76-79. 被引量:7
  • 4Shardanand U,Maes P.Social information filtering:algorithms for automating "word of mouth"[C]//Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems.New York:ACM Press,1995,210-217.
  • 5Herlocker J,Konstan J A,Terveen L,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53.
  • 6Geyer-Schulz A,Hahsler M,Wien W,et al.Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory[DB/OL].[2008-10-12].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.911.
  • 7Dahlen B J,Konstan J A,Herlocker J L,et al.Jumpstarting movielens:user benefits of starting a collaborative filtering system with "dead data"[DB/OL].[2008-10-12].http://www.bibsonomy.org/bibtex/24433e6aa3be2cdad117bfb5fd7a757a1/bsmyth.
  • 8Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[DB/OL].[2008-10-12].http://www.cs.pitt.edu/-mrotaru/comp/rs/Breese%20UAI%201998.pdf.
  • 9Herlocker J L,Konstan J A,Borchers A,et al.An algorithmic framework for performing collaborative filtering[C]// Hearst M A,Gey F F,Tong R.Proceedings of the 22nd International Conference on Research and Development in Information Retrieval (SIGIR'99) (Aug).New York:ACM Press,1999:230-237.
  • 10Billsus D,Pazzani M J.Learning collaborative information filters[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:46-53.

共引文献191

同被引文献47

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部