摘要
为解决多缸柴油机失火诊断问题,提出基于单振动传感器与BP神经网络的柴油机失火故障诊断方法。首先,通过柴油机缸盖上的单振动传感器获取振动信号,对振动信号进行滤波提取点火频率成分;然后,对振动信号按工作周期进行分段处理,进行等角度重采样及同步平均;最后,提取每缸工作信号的能量与峭度,建立特征向量,将其输入到BP神经网络分类器进行诊断识别。应用结果表明,该方法能有效诊断柴油机失火故障。
In order to solve the problem of multi cylinder diesel misfire diagnosis,the paper proposes the method based on single vibration sensor and BP neural network.It firstly obtains the vibration signals through single vibration sensor on the diesel cylinder head,and extracts the ignition frequency components by filtering the vibration signals.Then,it segments the vibration signals according to the operating cycle,and resamples them in equal angle and averages synchronously.Finally,it constructs feature vector by extracting energy and kurtosis of each cylinder,and inputs it into BP neural network classifier for diagnosis and identification.The application result shows that this method can diagnose diesel misfire failure effectively.
作者
贾继德
贾翔宇
韩佳佳
任刚
JIA Jide;JIA Xiangyu;HAN Jiajia;REN Gang(Military Vehicle Department, Army Military Transportation University, Tianjin 300161, China;Postgraduate Training Brigade, Army Military Transportation University, Tianjin 300161, China)
出处
《军事交通学院学报》
2017年第11期30-34,共5页
Journal of Military Transportation University
基金
军委装备发展部科研计划项目(WG2015JJ010002)
关键词
柴油机
BP神经网络
失火故障诊断
缸盖振动
diesel
BP neural network
misfire failure diagnosis
cylinder head vibration