期刊文献+

一类具有不连续源的奇摄动半线性微分方程组边值问题 被引量:1

A class of boundary value problem of singular perturbed semi-linear differential systems with discontinuous source term
下载PDF
导出
摘要 讨论了一类具有不连续源的奇摄动半线性微分方程组边值问题,构造了形式渐近解.利用Hartman-Nagumo不等式证明了奇摄动半线性微分方程组的解的存在性与唯一性,利用Aumann介值定理,得到了该方程组解的光滑性,并且得到了一致有效估计. In this paper a class of boundary value problems of the singular perturbed semi-linear differential systems with discontinuous source term is discussed.The formal asymptotic expansion is constructed.Using Hartman-Nagumo inequality,the existence and uniqueness of the solution of the singular perturbed semi-linear differential systems is proved.Using Aumann intermediate theorem,the smoothness of the solution of the systems is obtained.And the uniformly valid estimation for the solution of the systems is obtained.
作者 包立平 BAO Li-ping(School of Science, Hangzhou Dianzi University, Hangzhou 310018, China)
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2017年第4期413-422,共10页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(51775154)
关键词 奇摄动 半线性微分方程组 Hartman-Nagumo不等式 不连续源 Aumann介值定理 singular perturbation semi-linear diffrential systems Hartman-Nagumo inequality discontinuous source term Aumann intermediate theorem
  • 相关文献

参考文献3

二级参考文献15

  • 1唐荣荣.一类四阶非线性奇摄动方程的边界层问题(英文)[J].数学杂志,2007,27(4):385-390. 被引量:10
  • 2Vasil'VA A B,Butuzov V F,Kalachev L V.The Boundary Function Method for Singular Perturbation Problems[M].Philadelphia:SIAM,1995.
  • 3Vasil'VA A B,Butuzov V F.Asymptotic Expansions of Solutions[M].Moscow:Nauka,1973.
  • 4Farrell P A,O'Riordann E,Shishkin G I.A class of singularly perturbed quasilinear diffenential equations with interior layers[J].Mathematics of Computation,2009,48(265):103-127.
  • 5Wang Zhiming,Lin Wuzhong.The dirichlet problem for a quasilinear singularly perturbed second order system[J].Journal of Mathematical Analysis and Applications,1996,201:897-910.
  • 6Esipova V A.Asymptotic properties of general boundary value problems for singularly perturbed conditionally stable systems of ordinary differential equations[J].Differential Equations,1975,11(11):1457-1465.
  • 7郑祖庥,数学进展,1983年,12卷,2期,94页
  • 8Vasil'eva A B, Butuzov V F, Kalachev L V. The boundary function method for singular perturbation problems[M]. Philadelphia: SIAM, 1995.
  • 9Vasil'eva A B, Butuzov V F. Asymptotic expansions of solutions of singularly perturbed equations [M]. Moscow: Nauka, 1973.
  • 10Farrel P A, O'Riordan E, Shishkin G I. A class of singularly perturbed quasilinear diffenential equations with interior layers[J]. Mathematics of Computation, 2009, 48(265): 103-127.

共引文献22

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部