摘要
讨论了一类具有不连续源的奇摄动半线性微分方程组边值问题,构造了形式渐近解.利用Hartman-Nagumo不等式证明了奇摄动半线性微分方程组的解的存在性与唯一性,利用Aumann介值定理,得到了该方程组解的光滑性,并且得到了一致有效估计.
In this paper a class of boundary value problems of the singular perturbed semi-linear differential systems with discontinuous source term is discussed.The formal asymptotic expansion is constructed.Using Hartman-Nagumo inequality,the existence and uniqueness of the solution of the singular perturbed semi-linear differential systems is proved.Using Aumann intermediate theorem,the smoothness of the solution of the systems is obtained.And the uniformly valid estimation for the solution of the systems is obtained.
作者
包立平
BAO Li-ping(School of Science, Hangzhou Dianzi University, Hangzhou 310018, China)
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2017年第4期413-422,共10页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(51775154)