期刊文献+

Investigation of Heave Response of the Deepwater Octagonal FDPSO Using Various Heave Plate Configurations

Investigation of Heave Response of the Deepwater Octagonal FDPSO Using Various Heave Plate Configurations
下载PDF
导出
摘要 Heave plates can be employed to control undesirable heave motion amplitudes of the deepwater octagonal Floating, Drilling, Production, Storage, and Offloading(FDPSO) platform. Numerical simulations and model tests were applied to analyze and investigate the hydrodynamic response and the feasibility of the heave plate configurations. The diameter and the depth below the free surface of a single-layer heave plate, as well as the spacing of two-layer heave plates, were considered as the primary variables when studying the effect of heave plates on FDPSO hydrodynamics. The analysis results indicate that the heave plate diameter significantly affects the heave hydrodynamics, and heave performance could be improved with an increased diameter. In addition, increasing the depth below the free surface of a single-layer heave plate does not effectively suppress the heave motion within the range of draft depths tested. The target FDPSO obtained better heave characteristics with increased spacing between the two-layer heave plates. Furthermore, the global performances of the octagonal FDPSO with these typical heave plate configurations were comparatively analyzed. The results indicate that from a hydrodynamic point of view, the single-layer heave plate configuration has an advantage over the two-layer heave plate configuration. Heave plates can be employed to control undesirable heave motion amplitudes of the deepwater octagonal Floating, Drilling, Production, Storage, and Offloading(FDPSO) platform. Numerical simulations and model tests were applied to analyze and investigate the hydrodynamic response and the feasibility of the heave plate configurations. The diameter and the depth below the free surface of a single-layer heave plate, as well as the spacing of two-layer heave plates, were considered as the primary variables when studying the effect of heave plates on FDPSO hydrodynamics. The analysis results indicate that the heave plate diameter significantly affects the heave hydrodynamics, and heave performance could be improved with an increased diameter. In addition, increasing the depth below the free surface of a single-layer heave plate does not effectively suppress the heave motion within the range of draft depths tested. The target FDPSO obtained better heave characteristics with increased spacing between the two-layer heave plates. Furthermore, the global performances of the octagonal FDPSO with these typical heave plate configurations were comparatively analyzed. The results indicate that from a hydrodynamic point of view, the single-layer heave plate configuration has an advantage over the two-layer heave plate configuration.
出处 《Journal of Marine Science and Application》 CSCD 2017年第4期446-457,共12页 船舶与海洋工程学报(英文版)
基金 Supported by the National Scientific and Technology Major Project under Grant No.2016ZX05028
关键词 octagonal FDPSO HYDRODYNAMICS HEAVE PLATE HEAVE motion numerical analysis model test octagonal FDPSO hydrodynamics heave plate heave motion numerical analysis model test
  • 相关文献

参考文献1

二级参考文献2

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部