期刊文献+

面向缺失像素图像集的修正拉普拉斯特征映射算法 被引量:1

Modified Laplacian Eigenmap Algorithm for Missing Pixels Image Set
下载PDF
导出
摘要 针对缺失像素图像集,提出修正的拉普拉斯特征映射算法.该算法将缺失像素图像集看成向量集,利用向量之间的余弦相似度衡量缺失像素图像之间的距离,提出一种新的权值构造函数,并在多组标准测试数据集上进行实验.结果表明:修正的拉普拉斯特征映射算法可以很好地挖掘缺失像素图像数据集的内在流形结构,减弱缺失像素带来的不良影响. In this paper,we propose a modified laplacian eigenmaps algorithm for the missing pixel images.The algorithm takes the missing pixel image set as a vector set,then using the cosine similarity between vectors to measure the distance between missing pixel images.Further,a new weight constructor function is proposed.Experiments on several sets of standard test data sets show that the modified laplacian eigenmaps algorithm can well excavate the intrinsic manifold structure of the missing pixel images and weaken the negative effects of missing pixels.
作者 孙晓龙 王靖 杜吉祥 SUN Xiaolong;WANG Jing;DU Jixiang(College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China)
出处 《华侨大学学报(自然科学版)》 北大核心 2017年第6期862-867,共6页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(61370006) 福建省自然科学基金资助项目(2014J01237) 福建省教育厅科技项目(JA12006) 福建省高等学校新世纪优秀人才支持计划(2012FJ-NCET-ZR01) 华侨大学中青年教师科技创新资助计划(ZQN-PY116)
关键词 流形学习 缺失像素 拉普拉斯特征映射 余弦相似度 manifold learning missing pixels laplacian eigenmaps cosine similarity
  • 相关文献

参考文献1

二级参考文献15

  • 1Jolliffe I T. Principal Component Analysis[M]. 2nd Edition. USA : Springer, 1989.
  • 2Duda R O, Hart P E,Stork D G. Pattern Classifica- tion[M]. 2nd Edition. New York:John Wiley Sons,2001.
  • 3Tenenbaum J B,Silva V D, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000,290 ( 5500 ) : 2268-2276.
  • 4Roweis S T, Saul I. K. Nonlinear dimensionality re- duction by locally linear embedding [J ]. Science, 2000,290 (5500) :2323- 2326.
  • 5Zhang Zhen-yue, Zha Hong-yuan. Principal manifolds and nonlinear dimension reduction via local tangent space alignment[J]. SIAM Jornal on Scientific Corn puting, 2005,26 ( 1 ) : 313-338.
  • 6Dekel O,Shamir O. Learning to classify with missing and corrupted features[C] // Proceedings of the 25th Annual International Conference on Machine Learn ing (ICML 2008). Omnipress,2008:216 -223.
  • 7Williams D, Xuejun L, Ya X, et al. On classification with incomplete data[J]. IEEE Transactions on Pat tern Analysis and Machine Intelligence, 2007,29 (3) 427-436.
  • 8Little R J A, Rubin D B. Statistical Analysis with Is- sing Data[M]. New York:John Wiley & Sons,2002.
  • 9Schafer J L,Graham J W. Missing data:our view of the state of the art[J]. Psychological Methods, 2002, 27(2):147 -177.
  • 10Dempster A P,Laird N M. Mximum likehood esti-marion from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society, 1997,39 (1):1-38.

共引文献1

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部