期刊文献+

改进的频繁和高效用项集挖掘算法 被引量:1

Improved Mining Algorithm for Frequent and High Utility Itemsets
下载PDF
导出
摘要 提出一种基于局部效用质量值的上界剪枝新方法,引入伪投影技术避免真实地构造物理投影,基于二者提出改进的FHIMA-P算法.在提出的FHIMA-P算法中引入事务合并和投影事务合并技术,提出最终的FHIMA-MP算法,并在mushroom和accident数据集上进行实验.结果表明:FHIMA-P算法的运行时间相比FHIMA-ALL算法缩短,而FHIMA-MP算法则较前两者效率有非常大的提高;在不同参数下,mushroom和accident数据集中大量可合并事务(投影事务)数目也很好地证明了事务(投影事务)合并的有效性. A new method that uses the upper bound of quality to prune the search space based on local utility quality is proposed,meanwhile,pseudo projection technique is introduced to avoid actually construct the physical projection,then based on these two points,an improved FHIMAP algorithm is proposed.By adding the transaction merging and projected transaction merging technique in FHIMAP algorithm,the final FHIMAMP algorithm is proposed.An experiment is conducted on mushroom and accident dataset,the result shows that the running time of FHIMAP algorithm is shorter than that of FHIMAALL algorithm,while the FHIMAMP algorithm improves significantly compared with the previous two algorithms′efficiency.Moreover,the huge number of transactions(projected transaction)that can be merged on mushroom and accident dataset in different papameters also prove the effectiveness of transaction(projected transaction)merging technique.
作者 张健 刘韶涛 ZHANG Jian;LIU Shaotao(College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China)
出处 《华侨大学学报(自然科学版)》 北大核心 2017年第6期880-885,共6页 Journal of Huaqiao University(Natural Science)
基金 福建省科技计划重大项目(2011H6016)
关键词 频繁项集 高效用项集 伪投影 事务合并 frequent itemsets high utility itemsets pseudo projection transaction merging
  • 相关文献

参考文献2

二级参考文献55

  • 1HaHan J W, Pei J, Yin Y W. Mining frequent itemsets without candidate generation. In: The 2000 ACM SIGMOD International Conference on Management of data (SIGMOD’00), New York, 2000. 1-12.
  • 2AgAgrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: The 1993 ACM SIGMOD International Conference on Management of Data (SIGMOD’93), Washington, 1993. 207-216.
  • 3HaHan J, Cheng H, Xin D, et al. Frequent itemset mining: current status and future directions. Data Min Knowl Discov,2007, 15: 55-86.
  • 4BaBaralis E, Cerquitelli T, Chiusano S. IMine: index support for item set mining. IEEE TKDE J, 2009, 21: 493-506.
  • 5ZaZaki M J, Gouda K. Fast vertical mining using diffsets, In: The 9th ACM SIGKDD International Conference on. Knowledge Discovery and Data Mining (SIGKDD’03), Washington, 2003. 326-335.
  • 6DeDeng Z H, Wang Z H. A new fast vertical method for mining frequent itemsets. Int J Comput Intell Syst, 2010, 3:733-744.
  • 7AgAgrawal R, Srikant R. Fast algorithm for mining Association rules. In: The 20th International Conference on Very Large Data Bases (VLDB’94), Santiago de Chile, 1994. 487-499.
  • 8SaSavasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules in large databases. In: The21th International Conference on Very Large Data Bases (VLDB’95), Zurich, 1995. 432-443.
  • 9ShShenoy P, Haritsa J R, Sundarshan S, et al. Turbo-charging vertical mining of large databases. In: ACM International Conference on Management of Data and Symposium on Principles of Database Systems (SIGMOD’00), Dallas, 2000.22-33.
  • 10ZZaki M J. Scalable algorithms for association mining. IEEE TKDE J, 2000, 12: 372-390.

共引文献27

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部