期刊文献+

基于时间序列启发式信息的室内轨迹跟踪算法 被引量:5

Indoor Trajectory Tracking Algorithm Based on Time Series Heuristic Information
下载PDF
导出
摘要 现有的无线传感器网络室内轨迹跟踪算法是通过定位形成轨迹的,没有利用一定空间范围内相邻信标节点RSSI定位信息在一段时间内的启发式信息.提出了基于RSSI时间序列启发式信息的轨迹跟踪算法,该算法构建基于定位信息时空关联特性的轨迹跟踪模型,对定位信息进行一维重构边界时间序列、二维重构区域统计量、移动最小二乘法检测分别得到动态时间窗口及与之匹配的区域信息及边界信息,在此基础上完成受启发式信息约束的动态时间弯曲轨迹跟踪,并对时空关联模型轨迹跟踪算法中定位信息融合处理的原理进行了严谨的数学论证.通过现场实验与仿真实验表明:该算法轨迹光滑、误差不累积、环境适应性好,相比现有方法基于启发式信息有效克服噪声的影响、减小搜索范围,提高轨迹跟踪的准确性. Existing indoor trajectory tracking algorithms on wireless sensor network are based on continuous localization and can not make use of the heuristic information of RSSI time series within a certain temporal and spatial range.The heuristic information of RSSI time series is a key factor of trajectory tracking procedure.This paper proposes a new trajectory tracking algorithm on spatiotemporal correlation model based on heuristic information.According to the heuristic information related to moving trajectory,the new method contains the following essential phases.Firstly,we model the trajectory tracking model reflecting spatiotemporal correlation and statistical characteristics.Secondly,we detect spanning boundary event and judge which subarea the unknown node was in by means of information fusion of RSSI time series and moving least square method.Finally,the moving trajectory of unknown node is formed by means of dynamic time warping fingerprinting matching algorithm with heuristic information constraints.The principles of information fusion are strictly proved in mathematics.The field experiments and the simulation experiments show that the algorithm has good environment adaptability,smooth trajectory and the error does not accumulate among the subareas.Compared with the existing methods,the accuracy of trajectory tracked is improved.
作者 秦俊平 邓庆绪 孙诗文 仁庆道尔吉 佟海滨 苏宪利 Qin Junping;Deng Qingxu;Sun Shiwen;Renqing Daoerji;Tong Haibin;Su Xianli(School of Computer Science and Engineering, Northeastern University, Shenyang 110819;College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010080)
出处 《计算机研究与发展》 EI CSCD 北大核心 2017年第12期2883-2895,共13页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61472072 61540004) 内蒙古自然科学基金项目(2015MS0619 2013MS0920) 内蒙古高等学校科学研究项目(NJZY091)~~
关键词 无线传感器网络 接收信号强度指示 时间序列 启发式信息 轨迹跟踪 wireless sensor network (WSN) received signal strength indicator (RSSI) time series heuristic information trajectory tracking
  • 相关文献

参考文献7

二级参考文献369

  • 1赵磊,金培权,张蓝蓝,王怀帅,岳丽华.LayeredModel:一个面向室内空间的移动对象数据模型[J].计算机研究与发展,2011,48(S3):274-281. 被引量:7
  • 2何向南,周遥,张一桢,金澈清,周傲英.室内移动对象管理的原型系统[J].计算机研究与发展,2011,48(S3):357-361. 被引量:1
  • 3崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174. 被引量:730
  • 4郎昕培,许可,赵明.基于无线局域网的位置定位技术研究和发展[J].计算机科学,2006,33(6):21-24. 被引量:24
  • 5张炜,李建中,刘禹.一种基于概率模型的预测性时空区域查询处理[J].软件学报,2007,18(2):279-290. 被引量:2
  • 6Yang Zheng, Liu Yunhao, Li Xiangyang. Beyond trilateration: On the localizability of wireless ad-hoc networks [C] //Proe of the 28th IEEE Int Conf on Computer Communications. Piscataway, NJ: IEEE, 2009: 2392-2400.
  • 7Zhang P, Martonosi M. LOCALE: Collaborative localization estimation for sparse mobile sensor networks [C] //Proc of IEEE Int Conf on Information Processing in Sensor Networks. Piscataway, NJ: IEEE, 2008:195-206.
  • 8Doherty L, Pister K S J, Ghaoui L E. Convex position estimation in wireless sensor networks [C] //Proe of the IEEE INFOCOM 2001. Piscataway, NJ:IEEE, IEEE Computer and Communications Societies, 2001:1655-1663.
  • 9Chang J H, Tassiulas L. Energy conserving routing in wireless ad-hoc networking [C] //Proe of the IEEE INFOCOM 2000. Piscataway, NJ: IEEE, IEEE Computer and Communications Societies, 2000:22-31.
  • 10Bekmezci I, Alagoz F. Energy efficient, delay sensitive, fault tolerant wireless sensor network for military monitoring [C] //Proc of IEEE Sensors Applications Syrup (SAS). Piscataway, NJ: IEEE, 2008:172-177.

共引文献915

同被引文献47

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部