摘要
产品色彩意象通过情感认知传达消费者的色彩需求,为探讨用户的色彩意象与色彩需求间的内在关联,准确把握消费群体对产品色彩的情感意象,将多用户色彩意象作为决策因素,提出一个基于混合智能方法的色彩决策系统.该系统采用自适应策略调整惯性权重和混沌序列产生学习因子,提出粒子群改进算法;将改进的粒子群算法用于优化径向基人工神经网络,并建立预测模型;通过模型预测得到各用户的需求色彩;利用模糊C-均值聚类方法从需求色彩中提取用于产品设计的决策色彩.通过汽车外饰色彩的测试与评估结果表明,文中建立的色彩预测模型性能卓越,决策的色彩用户满意度较好,可设计出符合消费者真实意象需求的色彩方案,并为各类产品色彩的设计提供理论指导.
Color images of product convey the consumers’color demands through emotion cognition.In order to investigate the correlation between the color images and color demands,in this paper,a color decision system based on hybrid intelligence method was developed,which adopts the multi-users’color images as the decision factor and aims at grasping the emotion image of the consumers’color demands.An improved particle swarm optimization algorithm was proposed using self-adaptive inertia weight factor and chaotic learning factor.The prediction model was built using the improved algorithm to optimize the radial basis function artificial neural network.The consumers’color demands were obtained by the prediction model.The determined colors for product designing were extracted from the consumers’color demands using fuzzy C-means cluster method.The test and evaluation results of the automobile exterior color show that the proposed color decision system has an excellent performance with high user satisfaction,and can provide a theoretical guidance for color design of all kinds of products.
作者
李孟山
徐秋莹
高德民
陈炳生
袁寿财
许德鹏
Li Mengshan;Xu Qiuying;Gao Demin;Chen Bingsheng;Yuan Shoucai;Xu Depeng(College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000;College of Mechanical and Electric Engineering, Nanchang University, Nanchang 333001;College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2017年第11期2091-2099,共9页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(51663001
51463015
51377025)
江西省教育厅科学技术研究项目(GJJ151012
GJJ150983)
关键词
色彩意象
多用户
混合智能
演化算法
人工神经网络
color image
multi-users
hybrid intelligence
evolutionary algorithm
artificial neural network