期刊文献+

二阶几何连续的闭合全凸曲线的构建 被引量:2

Construction of Closed, Global Convexity and G^2 Continuity Curve
下载PDF
导出
摘要 针对现有保凸曲线插值算法不能解决过平面凸包点集构建闭合全凸光滑曲线的实际应用问题,提出一种二阶几何连续的闭合全凸曲线的插值算法.该算法以一个平面凸包点集为插值点,以相邻的2个凸包点作为1条3次Bézier曲线的第1个与第4个控制点,根据相邻3次Bézier曲线间的二阶几何连续性条件求解每条3次Bézier曲线的第2个与第3个控制点;然后从理论上证明了曲线的闭合性、全凸性及二阶几何连续性,并提出一种简易有效的曲线构建算法.实验结果表明,该插值曲线具备明确的物理学意义上的解释;将该算法应用于模拟卷尺测量轨迹以提取树干直径的实际场景中,进一步验证了其精确性与实用性. existing methods of curve interpolation cannot solve practical application problems of constructing a closed smooth curve with global convexity for planar convex hull point set.For this purpose,a curve interpolation algorithm for constructing a closed G2continuity curve with global convexity is proposed.A planar convex hull point set was used as interpolating points.The two adjacent convex hull points were used as the first and the fourth control points of a cubic Bézier curve,and the second and the third control points were resolved by the relationship of geometric continuity between the two adjacent Bézier curves.The closed,G2continuity and global convexity properties of the constructed curve were proved theoretically.A simple and effective curve constructing algorithm was presented.The experiment showed that the constructed curve has an explicit physical explanation.The practical application of simulating the measurement path of tape to retrieve stem diameter by the constructed curves verifies the accuracy and practicability of the proposed curve interpolation algorithm.
作者 尤磊 冯岩 郭建伟 叶军涛 唐守正 宋新宇 You Lei;Feng Yan;Guo Jianwei;Ye Juntao;Tang Shouzheng;Song Xinyu(College of Computer and Information Technology, Xinyang Normal University, Xinyang 464000;National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190;Institute of Forest Resources and Information Techniques, Chinese Academy of Forestry, Beijing 100091;College of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第12期2216-2224,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划(2012AA102002) 国家自然科学基金(31470641 11501489 61379096 61761003) 国家自然科学基金重点项目(61331018) 河南省科技计划项目(152102210129 172102210454) 河南省科技开放合作项目(172106000071) 河南省高等学校重点科研项目资助计划(18A520009) 信阳师范学院"南湖学者奖励计划"青年项目
关键词 曲线插值 凸包 凸曲线 几何连续性 模拟测量 curve interpolation convex hull convex curve geometric continuity simulation measurement
  • 相关文献

参考文献4

二级参考文献25

  • 1邓建松,冯玉瑜.一种平面保凸插值构造光滑曲线的方法[J].高校应用数学学报(A辑),1998,13(B06):1-8. 被引量:3
  • 2Ohtake Y, Belyaev A, Seidel H P. lnterpolatory subdivision curves via diffusion of normals [C] //Proceedings of the Computer Graphics International, Tokyo, 2003:22-27.
  • 3Dyn N, Levin D, Gregory J A. A 4-point interpolatory subdivision scheme for curve design[J]. Computer Aided Geometric Design, 1987, 4(3) : 257-268.
  • 4Hassan M F, Ivrissimitzis I P, Dodgson N A, et al. An interpolating 4-point C^2 ternary stationary subdivision scheme [J]. Computer Aided Geometric Design, 2002, 19 (1): 1-18.
  • 5Dyn N, Floater M S, Hormann K. A C^2 four-point subdivision scheme with fourth order accuracy and its extensions [M] //Mathematical Methods for Curves and Surfaees. Brentwood: Nashboro Press, 2004:145-156.
  • 6Marinov M, Dyn N, Levin D. Geometrically controlled 4- point interpolatory schemes [M]//Advances in Multiresolution for Geometric Modeling. London: Springer, 2006:303-315.
  • 7Cai Z J. Modified four-point scheme and its application [J]. Computer Aided Geometric Design, 1998, 15(2): 251-260.
  • 8Dyn N, Kuijt F, Levin D, et al. Convexity preservation of the four-point interpolatory subdivision scheme [J]. Computer Aided Geometric Design, 1999, 16(8): 789-792.
  • 9Aspert N, Ebrahimi T, Vandergheynst P. Non-linear subdivision using local spherical coordinates [J]. Computer Aided Geometric Design, 2003, 20(3): 165-187.
  • 10Kuijt F, van Damme R. Convexity preserving interpolatory subdivision schemes [J]. Constructive Approximation, 1998, 14(4) : 609-630.

共引文献32

同被引文献17

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部