期刊文献+

改进随机森林在Android恶意检测中的应用 被引量:3

Improved Random Forest Algorithm and Its Application in Android Malware Detection
下载PDF
导出
摘要 为了提高Android恶意软件多分类问题的效率,提出了一种改进的随机森林算法.针对随机森林构建过程中每个节点分裂时选取的特征子集进行优化,同时采用交叉验证方法进行模型优化.实验结果表明,在将Android应用划分为正常应用、短信木马、间谍软件、僵尸网络问题上,改进的随机森林算法分类性能优于原始的随机森林算法,具有较高的精确率(94.0%)和召回率(90.5%).能够有效检测出Android恶意软件类型,保护设备安全,保障用户信息和财产安全. In order to improve the efficiency of android malware detection,an improved random forest algorithm is proposed.It optimizes the subset of features selected in the process of splitting each node during the random forest generation process,and the model will be optimized by Cross Validation method.The experiment results show that improved random forest is superior to the original one in the problem of classifying android applications into normal,SMS Trojan,spyware,botnet with a higher precision(94.0%)and recall(90.5%).It can effectively detect different android malware,and the information and property of the users are guaranteed.
作者 朱月俊 文爽 李剑 Zhu Yuejun;Wen Shuang;Li Jian(College of Computer, Beijing University of Posts and Telecommunications, Beijing 100876)
出处 《信息安全研究》 2017年第11期1020-1027,共8页 Journal of Information Security Research
基金 国家自然科学基金项目(U1636106)
关键词 安卓 恶意软件 多分类 随机森林 特征子集 交叉验证 Android malware multiple classification random forest feature subset cross validation
  • 相关文献

参考文献6

二级参考文献62

  • 1网秦.2013年上半年网秦全球手机安全报告[R/OL].[2013-07-23].http://cn.nq.com/neirong/2013Q2.pdf.
  • 2JIANG X,ZHOU Y.A survey of Android malware[M].New York:Springer,2013:3-20.
  • 3SCHMIDT A D,BYE R,SCHMIDT H G,et al.Static analysis of executables for collaborative malware detection on Android[C]//Proceedings of the 2009 IEEE International Conference on Communications.Piscataway:IEEE Press,2009:631-635.
  • 4BURGUERA I,ZURUTUZA U,NADJM-TEHRANI S.Crowdroid:behavior-based malware detection system for Android[C]//Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices.New York:ACM,2011:15-26.
  • 5CHIANG H S,TSAUR W.Mobile malware behavioral analysis and preventive strategy using ontology[C]//Proceedings of the 2010IEEE Second International Conference on Social Computing.Piscataway:IEEE Press,2010:1080-1085.
  • 6SHABTAI A,ELOVICI Y.Applying behavioral detection on Android-based devices[C]//Proceedings of the Mobile Wireless Middleware,Operating Systems,and Applications.Berlin:Springer,2010,48:235-249.
  • 7Google.Manifest.permission[EB/OL].[2013-11-01].http://developer.android.corn/reference/android/Manifest.permission.html.
  • 8BARRERA D,KAYACIK H G,van OORSCHOT P C,et al.A methodology for empirical analysis of permission-based security models and its application to Android[C]//CCS '10:Proceedings of the 17th ACM Conference on Computer and Communications Security.New York:ACM,2010:73-84.
  • 9ZHOU Y,JIANG X.Dissecting Android malware:characterization and evolution[C]//Proceedings of the 2012 IEEE Symposium on Security and Privacy.Washington,DC:IEEE Computer Society,2012:95-109.
  • 10KIRA K,RENDELL L A.The feature selection problem:traditional methods and a new algorithm[C]//AAAI '92:Proceedings of the 10th National Conference on Artificial Intelligence.Palo Alto:AAAI Press,1992:129-134.

共引文献56

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部