期刊文献+

基于仿真的博弈系统优化策略研究 被引量:1

OptimizingStrategy for Game TheorySystem Based on the Convex Optimization Method
下载PDF
导出
摘要 以石头剪刀布博弈系统为例,提出一种新的理论方法优化该系统,目的是在不受其他因素影响下最大化玩家获得的收益,这种新方法即凸优化.引入非零和矩阵建立凸优化算法模型,定量地创建了石头剪刀布博弈系统收益方程,这种方法前人鲜有研究.创新地提出了博弈系统最优值的临界方程即鞍点方程,并用强对偶理论证明了该方程的正确性.重点研究凸优化中的Newton算法对石头剪刀布博弈系统进行数据仿真和最大化玩家获得的收益.仿真结果表明,数值结果与理论假设相一致,验证了该方法的可行性和正确性.该研究对于理解博弈系统和应用凸优化具有十分重要的意义. The convex optimization,which serves as a new optimized method,can be fully applied to the game theory system,aiming at maximizing the payoff of the game systems(for all players).The two person non zero sum matrix was introduced to describe the equivalent of payoff in the hypothetical game theory system for making quantitative analyses and getting maximal payoff of the system.A saddle point equation was created to be the critical equation of the optimal value of the game theory system and Newton’s algorithm was used to simulate the game model.The simulation results show that,the results are consistent with the theoretical hypothesis values.The method was tested and verified to be feasible and accurate.The work is helpful for deeply understanding the game theory system and reasonably applying the convex optimization.
作者 田伟 刘懿芳 TIAN Wei;LIU Yifang(Collage of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《上海理工大学学报》 北大核心 2017年第5期420-424,共5页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(10874118)
关键词 仿真 凸优化 博弈系统 鞍点 simulation convex optimization game theory system saddle point
  • 相关文献

参考文献3

二级参考文献18

  • 1Koskie S. Contributions to dynamic nash games and appli-cations to power control for wireless networks[D]. PhD thesis, Rutgers University,2003.
  • 2Zander J. Performance of optimum transmitter power control in cellular radio systems[J]. IEEE Transactions on Networks,1992(41):57-62.
  • 3Famolari D,Mandayam N B,Goodman D J. A new framework for power control in wireless data networks:Games,utility,and pricing[C]//Proceedings of Alperton Conference on Communication,Control,and Computing,Illinois,USA,1998:546-555.
  • 4Koskie S,Gajic Z.A Nash game algorithm for SIR-based power control in 3G wireless CDMA networks[J].IEEE/ACM Transactions on Networks,2005(13):1017-1026.
  • 5ZHANG Yu-nong,GUO Dong-sheng,YI Chen-fu,et al. More Than Newton Iterations Generalized from Zhang Neural Network for Constant Matrix Inversion Aided with Line-Search Algorithm[C]//in Proceedings of IEEE Conference on Control and Automation, China,2010:399-404.
  • 6Chong S K, Gaber M M, Krishnaswamy S, et al. Energy conservation in wireless sensor networks: a rule-based approach[J]. Knowledge and Information Systems, 2011,28(3): 579-614.
  • 7Oliveira L M, Rodrigues J J. Wireless sensor networks.- a survey on environmental monitoring[J]. Journal of Communications, 2011,6(2) : 143-151.
  • 8Hackmann G, Sun F, Castaneda N, et al. A holistic ap- proach to decentralized structural damage localization using wireless sensor networks[J]. Computer Commu- nications, 2012,36(1) : 29-41.
  • 9Zhang Guo-peng, Cong Li, Ding En-jie, et al. Fair and efficient resource sharing for selfish cooperative com- munication networks using cooperative game theory [C]// IEEE International Conference on Communica- tions (ICC). kyoto: IEEE, 2 011 : 1-5.
  • 10辜方林,张杭.CDMA系统中的一种分布式功率控制算法[J].计算机工程与应用,2011,47(19):118-120. 被引量:5

共引文献3

同被引文献12

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部