摘要
研究了一类三维非粘性的可压流体力学方程局部光滑解的性质,证明了当方程的初值满足一定条件时,解在有限时间内会形成奇异.讨论了此方程具有有限传播速度,并利用有限传播速度讨论解的奇异性.解的有限传播速度对研究解的奇异性起非常重要的作用.
The properties of local smooth solutions of a system of three dimensional inviscid compressible fluid equations were investigated.It is proved that a singular solution will be generated in the limited time when the initial value of the equations satisfies some conditions.The finite speed of propagation was discussed and used to study the singularity of the solution.The finite speed of propagation of the solution plays a very important role to study the singularity of the solution.
作者
韩平
徐国静
HAN Ping;XU Guojing(College of Science,Hohai University,Nanjing 211100,China;Wentian College,Hohai University,Maanshan 243031,China)
出处
《上海理工大学学报》
北大核心
2017年第5期425-429,共5页
Journal of University of Shanghai For Science and Technology
基金
国家自然科学基金资助项目(11201116)
关键词
三维非粘性可压流体力学方程
有限传播速度
解的奇异性
three dimensional inviscid compressible equation
finite propagation speed
singular solution