摘要
将近、中红外光谱数据进行融合,并结合偏最小二乘法建立了两个品牌掺杂牛奶的判别模型。分别准备伊利和蒙牛纯牛奶样品各40个、掺杂三聚氰胺牛奶样品各40个。室温下,采集所有样品的近红外透射光谱和中红外衰减全反射光谱。在融合近、中红外光谱数据的基础上,分别建立了伊利、蒙牛以及两品牌牛奶的判别模型,3个模型对预测集未知样品的判别正确率分别为96.2%、96.2%和94.2%。为了比较,分别建立了单一近红外光谱和中红外光谱的伊利、蒙牛以及两品牌牛奶的判别模型。研究结果表明:相对于单一的近红外光谱和中红外光谱,融合近、中红外光谱能减小不同牛奶品牌对模型预测性能的影响,可提供更好的分析结果。
The models of two brands of adulterated milk were constructed based on the information fusion of near and mid infrared spectroscopy combined with partial least squares discriminant analysis(PLS-DA).40Yili pure milk samples,40Mengniu pure milk samples,40Yili milk adulterated with melamine samples,and40Mengniu milk adulterated with melamine samples,were prepared respectively.Then,near infrared transmittance spectra and mid infrared attenuated total reflectance spectra of all samples were obtained under room temperature.Based on the fused data of near and mid infrared spectra,the discrimination models of Yili,Mengniu and both brands milk were established.The classification accuracies of three discrimination models for prediction set were96.2%,96.2%and94.2%,respectively.For comparing,the discriminant models of Yili,Mengniu and two brands milk were established using near infrared spectra and mid infrared spectra individually.The results show that the fusion of near and mid infrared spectra not only can reduce the effect of different brands milk on the model,but also can provide better results compared with near infrared spectra and mid infrared spectra individually.
作者
张海洋
廖彩淇
杨仁杰
鲍秀君
王威
靳皓
张伟玉
ZHANG Hai-yang;LIAO Cai-qi;YANG Ren-jie;BAO Xiu-jun;WANG Wei;JIN Hao;ZHANG Wei-yu(College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384,China)
出处
《天津农学院学报》
CAS
2017年第4期52-56,共5页
Journal of Tianjin Agricultural University
基金
天津农学院大学生创新创业训练计划项目"不同品牌牛奶对红外光谱判别模型影响及优化方法研究"(201610061011)
天津市科技特派员项目"复杂掺伪食品体系特征光谱信息提取与检测方法研究"(16JCTPJC47500)
国家自然科学青年基金"基于二维相关谱掺伪牛奶检测方法研究"(31201359)
关键词
近红外光谱
中红外光谱
数据融合
不同品牌牛奶
判别分析
三聚氰胺
near infrared spectroscopy
mid infrared correlation spectroscopy
data fusion
different brands milk
discriminant analysis
melamine