期刊文献+

Role of equal-strain assumption in unit-cell theory for consolidation with vertical drains 被引量:2

Role of equal-strain assumption in unit-cell theory for consolidation with vertical drains
下载PDF
导出
摘要 In the development of unit-cell theory for the analytical analysis of consolidation with vertical drains, the equal-strain assumption is often made with the intention of modelling consolidation under uniform settlement conditions. In contrast, the free-strain assumption for modelling consolidation under uniform load conditions is seldom employed, mainly because of the complexities involved in the analysis. This study derives a rigorous analytical solution to the generalised governing equations of free-strain consolidation with a vertical drain subjected to an instantaneous load. Calculated results from the newly proposed solution are compared with those from three available solutions derived based on the equal-strain assumption. Surprisingly good agreement is obtained in terms of excess pore-water pressure, degree of consolidation, and settlement. Horizontal profiles of settlement were not uniform before the end of consolidation. This indicates that the uniform settlement condition is not actually reproduced by the analytical solutions derived based on the equal-strain assumption. The equal-strain assumption is a sufficient but not necessary condition for deriving an analytical solution to unit-cell consolidation theory. The assumption plays no role in modelling consolidation under uniform settlement conditions but simplifies the analytical analysis of free-strain consolidation and results in an approximate solution of high accuracy for consolidation under uniform load conditions. Moreover, drain resistance and smear effects not only retard the consolidation rate, but also importantly shape the vertical and horizontal profiles of excess pore-water pressure, respectively. In the development of unit-cell theory for the analytical analysis of consolidation with vertical drains, the equal-strain assumption is often made with the intention of modelling consolidation under uniform settlement conditions. In contrast, the free-strain assumption for modelling consolidation under uniform load conditions is seldom employed, mainly because of the complexities involved in the analysis. This study derives a rigorous analytical solution to the generalised governing equations of free-strain consolidation with a vertical drain subjected to an instantaneous load. Calculated results from the newly proposed solution are compared with those from three available solutions derived based on the equal-strain assumption. Surprisingly good agreement is obtained in terms of excess pore-water pressure, degree of consolidation, and settlement. Horizontal profiles of settlement were not uniform before the end of consolidation. This indicates that the uniform settlement condition is not actually reproduced by the analytical solutions derived based on the equal-strain assumption. The equal-strain assumption is a sufficient but not necessary condition for deriving an analytical solution to unit-cell consolidation theory. The assumption plays no role in modelling consolidation under uniform settlement conditions but simplifies the analytical analysis of free-strain consolidation and results in an approximate solution of high accuracy for consolidation under uniform load conditions. Moreover, drain resistance and smear effects not only retard the consolidation rate, but also importantly shape the vertical and horizontal profiles of excess pore-water pressure, respectively.
作者 雷国辉 徐梨丹 郑强 吴宏伟 LEI Guo-hui;XU Li-dan;ZHENG Qiang;NG Charles Wang Wai
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2914-2923,共10页 中南大学学报(英文版)
基金 Projects(51278171,51578213,41530637) supported by the National Natural Science Foundation of China Project(B13024) supported by the"111"Project,China Projects(2015B06014,2017B20614) supported by the Fundamental Research Funds for the Central Universities of China
关键词 CONSOLIDATION ground improvement PORE pressures SETTLEMENT vertical DRAIN consolidation ground improvement pore pressures settlement vertical drain
  • 相关文献

参考文献3

二级参考文献26

共引文献161

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部