期刊文献+

概率伪形态学的自适应参数设置研究

The Study on the Adaptive Parameter Setting of Probability Pseudo Morphology
下载PDF
导出
摘要 概率伪形态学是一种新的形态学处理方法,与传统形态学的基本运算不同,它无需对原数据进行排列而求得极值,而是基于切比雪夫不等式估计邻域内数据的两个伪极值来定义腐蚀和膨胀结果,其中参数k可用来调节伪极值与实际极值的逼近程度,并使概率伪形态学方法兼具线性和非线性特性。通过对图像直方图进行规定化处理自适应地确定参数k,减小了直接在原直方图上估计参数造成的误差。与传统形态学方法对比,概率伪形态学方法的腐蚀膨胀结果较好地保持图像的形状和细节结构,同时在边缘提取中得到的结果较理想。 Probabilistic pseudo-morphology is a new morphological method differing from the traditional in the basic operational process:dilation and erosion.It does not need to rank the original data then obtain the extremes,instead,it estimates two pseudo-extremes of neighborhood data based on Chebyshev inequality to determine the operations.The parameter k can be used to adjust the approximation degree of the pseudo-extreme value and the actual extreme value,and makes the probabilistic pseudo-morphological method have both linear and nonlinear characteristics.By regularizing the image histogram can adaptively determine the parameter k,then reducing the error caused by estimating directly on the original histogram.Compared with the traditional morphological methods,the results of probabilistic pseudo-morphological erosion and dilation can keep better shape and structure of the details of the image,and the results in the edge extraction is also better.
作者 黄嘉艳 蒋金山 Huang Jiayan;Jiang Jinshan(School of Mathematics,South China University of Technology,Guangzhou Guangdong 510641)
出处 《数字技术与应用》 2017年第11期75-80,共6页 Digital Technology & Application
关键词 概率伪形态学 参数选取 自适应 腐蚀 膨胀 probabilistic pseudo-morphology parameter setting adaptivity erosion dilation
  • 相关文献

参考文献4

二级参考文献29

  • 1肖斌,王晅,毕秀丽,王振邦.一种基于高斯函数的直方图规定化算法[J].铁道学报,2006,28(4):119-122. 被引量:15
  • 2张懿,刘旭,李海峰.自适应图像直方图均衡算法[J].浙江大学学报(工学版),2007,41(4):630-633. 被引量:39
  • 3蔡艳,陈抚良.多元概化理论在教育评估信度分析中的应用研究[J].江西师范大学学报(自然科学版),2007,31(3):306-310. 被引量:11
  • 4Yasumasa Itoh,Tanaka Yutaka.Image enhancement based on estimation of high resolution component using wavelet transform.[A].In:Proc IEEE International Conference on Image Processing[C].Paris:1999.489-493.
  • 5Azriel Rosenfield,Avinash C K.Digital Picture Processing[M].New York:Academic Press,1982.154-167.
  • 6CHENG Heng-da,XU Hui-juan.A novel fuzzy logic approach to contrast enhancement[J].Pattern Recognition,2000,33(5):809-819.
  • 7Pal S K,King R A.Image enhancement using smoothing with fuzzy sets[J].IEEE Trans Systems,Man and Cybernetics,1981,11(7):494-501.
  • 8Farzam F,Bagher M.Modified iterative fuzzy control based filter for image enhancement with multiplicative noise removal property[A].In:Proc IEEE International Conference on Image Processing[C].Paris:1999.539-544.
  • 9Stark J.A Adaptive Image Contrast Enhancement Using Generalization of Histogram Equalization[J].IEEE Trans Image Processing,2000,9(5):889-896.
  • 10Zhu H,Chan F H Y,Lam F K.Image Contrast Enhancement by Constrained Local Histogram Equ-lization[J].Computer Vision and Image Understanding,1999,73(2):281-290.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部