摘要
Many rivers originate in high mountainous regions. However, the effects of climate warming on the runoff and water balance in these regions remain unclear due to the lack of observational data from harsh environments, and the variable influences of climate change on alpine land-cover types with different water balances. Using observations and simulations from Coup Model, water-balance values collected at five alpine land-cover types(steppe, shrub meadow, moist meadow, swamp meadow, and moraine) in a small alpine watershed, the Qilian Mountains in Northwest China, from October 2008 to September 2014, were compared. Measured evapotranspiration, multilayer soil temperatures and water contents, and frozen-depth data were used to validate Coup Model outputs. The results show that elevation is the primary influence on precipitation, evapotranspiration, and runoff coefficients in alpine regions. Land-cover types at higher elevations receive more precipitation and have a larger runoff coefficient. Notably, climate warming not only increases evapotranspiration but also particularly increases the evapotranspiration/precipitation ratio due to an upward shift in the optimum elevation of plant species. These factors lead to decrease runoff coefficients in alpine basins.
Many rivers originate in high mountainous regions. However, the effects of climate warming on the runoff and water balance in these regions remain unclear due to the lack of observational data from harsh environments, and the variable influences of climate change on alpine land-cover types with different water balances. Using observations and simulations from Coup Model, water-balance values collected at five alpine land-cover types(steppe, shrub meadow, moist meadow, swamp meadow, and moraine) in a small alpine watershed, the Qilian Mountains in Northwest China, from October 2008 to September 2014, were compared. Measured evapotranspiration, multilayer soil temperatures and water contents, and frozen-depth data were used to validate Coup Model outputs. The results show that elevation is the primary influence on precipitation, evapotranspiration, and runoff coefficients in alpine regions. Land-cover types at higher elevations receive more precipitation and have a larger runoff coefficient. Notably, climate warming not only increases evapotranspiration but also particularly increases the evapotranspiration/precipitation ratio due to an upward shift in the optimum elevation of plant species. These factors lead to decrease runoff coefficients in alpine basins.
基金
financial support from the National Natural Sciences Foundation of China(41401041)and the National Basic Research Program of China(2013CBA01806)