摘要
An advanced configuration for multilevel voltage source converters is proposed. The proposed converter is able to apply asymmetrical DC sources. The configuration of the proposed inverter is well designed in order to provide the maximum number of voltage levels in output terminals using lower number of circuit devices. The authority of the proposed inverter versus the conventional H-bridge cascaded inverter and the most recently introduced ones, is verified with a provided comparison study. The proposed inverter is able to generate the desired voltage levels using a lower number of circuit devices including power semi-conductor switches, IGBTs, diodes, related gate driver circuits of switches and DC voltage sources. As a result, the total cost and installation area are considerably reduced and the control scheme gets simpler. To confirm the feasibility of the proposed multilevel structure, both the simulation and experimental results are provided and compared which shows good agreements.
An advanced configuration for multilevel voltage source converters is proposed. The proposed converter is able to apply asymmetrical DC sources. The configuration of the proposed inverter is well designed in order to provide the maximum number of voltage levels in output terminals using lower number of circuit devices. The authority of the proposed inverter versus the conventional H-bridge cascaded inverter and the most recently introduced ones, is verified with a provided comparison study. The proposed inverter is able to generate the desired voltage levels using a lower number of circuit devices including power semi-conductor switches, IGBTs, diodes, related gate driver circuits of switches and DC voltage sources. As a result, the total cost and installation area are considerably reduced and the control scheme gets simpler. To confirm the feasibility of the proposed multilevel structure, both the simulation and experimental results are provided and compared which shows good agreements.