摘要
实时数据的有效性与CPU处理能力是信息物理融合系统(CPS)中的一对矛盾,提高采样频率可以保证实时数据的有效性,但是会增加CPU负荷,降低系统的计算能力。首先,利用实时数据的语义特点建立数据的有效性模型;然后,通过在CPU空闲期间设置预调度任务,合理地利用数据有效性模型,设置新的有效性间隔和实时数据的更新事务的开始时间,减少CPU执行时间;最后,在棉花采摘锭的自转、公转及油压等参数上,对基于语义模型的实时数据有效性保证策略进行了系统的评价,结果表明所提方法能够减少15%左右的CPU负荷。
The validity of real time data and CPU processing capability is a contradiction in the cyber physical system(CPS).While increasing the sampling frequency can guarantee the validity of the real time data,it can also increase the CPU workloads and reduce the system's computing power.Firstly,this paper used the semantic features of real timedata to establish the validity model of the data.Then,by setting the pre-scheduling task during the idle period of the CPU,making good using of the data validity model,setting the new validity interval and the start time of the updatetransaction of the real time data,the CPU execution time was reduced.Finally,the strategy based on semantic modelwas evaluated systematically on the parameters such as rotation,revolution and oil pressure of cotton picking ingot.The CPU load can be reduced by about15%.
作者
汤小春
田凯飞
TANG Xiao-chun;TIAN Kai-fei(School of Computer Science,Northwestern Polytechnical University,Xi' an710072 ,China)
出处
《计算机科学》
CSCD
北大核心
2017年第12期11-16,22,共7页
Computer Science
基金
中国科技部国家重点研发计划(2016YFB1000700)资助