期刊文献+

SVRRP_(MCC):一种支持向量回归机的正则化路径近似算法 被引量:1

SVRRP_(MCC):A Regularization Path Approximation Algorithm of Support Vector Regression
下载PDF
导出
摘要 正则化路径算法是数值求解支持向量回归机(Support Vector Regression,SVR)的有效方法。根据SVR正则化路径的分段线性性质,该类算法可在相当于一次SVR求解的时间复杂度内求得正则化参数的所有可能取值及对应SVR的解。由于在解路径建立过程中需要求解线性方程组,已有的精确计算方法难以处理大规模的样本数据,因此研究了正则化路径近似算法,并提出了SVR正则化路径近似算法SVRRP_(MCC)。首先,应用Monte Carlo方法实现线性方程组系数矩阵的随机采样,求得近似系数矩阵;然后,应用Cholesky分解方法实现快速求解系数逆矩阵;进一步,分析了SVRRP_(MCC)算法的近似误差和计算复杂性;最后,在标准数据集上的实验验证了SVRRP_(MCC)算法的合理性和较高的计算效率。 The regularization path algorithm is an efficient method for numerical solution to the support vector regression(SVR)problem,which can obtain all possible values of regularization parameters and the solutions of SVR in the time complexity equivalent to a SVR solution.Existing SVR regularization path algorithms include solving a system of iteration equations.The existing accurate approaches are difficult to apply to large-scale problems.Recently,there has been many interests about the approximation approach.And a new approxirnation algorithm for SVR regularization path named SVRRPMCC was proposed in this paper.Firstly,SVRRPMCC applied Monte Carlo method to randomly sample the coefficient rnatrix of the system of iteration equations.Then it used the Cholesky factorization method to obtain the coefficientinverse matrix.Further,the error bound and the computational complexity about the algorithm SVRRPMCC were analyzed.Experimental results on benchmark datasets it used show the validity and efficiency of the SVRRPMCC.
作者 王梅 王莎莎 孙莺萁 宋考平 田枫 廖士中 WANG Mei;WANG Sha-sha;SUN Ying-qi;SONG Kao-ping;TIAN Feng;LIAO Shi-zhong(Schoo1 of Computer and Information Technology,Northeast Petroleum University,Daqing163318,China;Postdoctoral Workstation of Beijing Deweijiaye Technology Co.Ltd.,Beijing100020,China;Key Laboratory on Enhanced Oil and Gas Recovery of the Ministry of Education,Northeast Petroleum University,Daqing163318,China;School of Computer Science and Technology,Tianjin University,Tianjin300072,China)
出处 《计算机科学》 CSCD 北大核心 2017年第12期42-47,共6页 Computer Science
基金 国家自然科学基金项目(61502094) 黑龙江省科学基金项目(F2015020 F2016002 E2016008) 北京市博士后工作经费资助项目(2015ZZ-120) 北京市朝阳区博士后工作经费资助项目(2014ZZ-14) 东北石油大学校培育基金项目(XN2014102)资助
关键词 支持向受回归机 正则化路径 矩阵近似 MonteCarlo采样 CHOLESKY分解 Support vector regression Regularization path Matrix approximation Monte Carlo sample Cholesky decomposition
  • 相关文献

参考文献6

二级参考文献170

  • 1梅立军,周强,臧路,陈祖舜.知网与同义词词林的信息融合研究[J].中文信息学报,2005,19(1):63-70. 被引量:28
  • 2董振东,董强,郝长伶.知网的理论发现[J].中文信息学报,2007,21(4):3-9. 被引量:99
  • 3Vapnik V. The Nature of Statistical Learning Theory [M]. Berlin: Springer, 2000.
  • 4Guyon I, Saffari A, Dror G. Model selection: Beyond the Bayesian/frequent divide[J]. Journal of Machine Learning Research, 2010, 11: 61-87.
  • 5Duan K, Keerthi S, Poo A. Evaluation of simple performance measures for tuning SVM hyperparameters [J]. Neurocomputing, 2003, 51: 41-59.
  • 6Huang C, Wang C. A GA-hased feature selection and parameters optimization for support vector machines [J]. Expert Systems with Applications, 2006, 31(2):231-240.
  • 7Friedrichs F, Igel C. Evolutionary tuning of multiple SVM parameters [J]. Neuroeomputing, 2005, 64:107-117.
  • 8Vapnik V, Chapelle O. Bounds on error expectation for support vector machines [J]. Neural Computation, 2000, 12 (9) : 2013-2036.
  • 9Chapelle O, Vapnik V, Bousquet O. Choosing multiple parameters for support vector machines [J]. Machine Learning, 2002, 46(1): 131-159.
  • 10Xu Z, Dai M, Meng D. Fast and effcient strategies for model selection of Gaussian support vector machine [J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(5) : 1292-1307.

共引文献1129

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部