期刊文献+

一种基于Bhattacharyya系数和项目相关性的协同过滤算法 被引量:5

Collaborative Filtering Algorithm Based on Bhattacharyya Coefficient and Item Correlation
下载PDF
导出
摘要 在大数据时代,为了满足用户的信息需求,个性化推荐系统得到了广泛应用。协同过滤是一种简单有效的推荐算法。然而,许多传统的相似度计算方法仅仅基于用户的共同评分值,且不适用于稀疏数据环境,因此提出了一种新的基于Bhattacharyya系数的相似度方法。该方法使用了所有用户对项目的评分信息,不仅可以通过用户的评分行为获得用户的相似兴趣特征,而且可以获得用户已评分物品之间的相关性;同时由于不同的用户有不同的评分习惯,新方法也考虑了每个用户的评分偏好。通过考虑用户相似性的更多因素,可以为目标用户选择更恰当的邻域用户,以更有效地提升推荐性能。在两个真实数据集上进行的实验表明,所提方法优于其他当前最好的相似度方法。 ln order to satisfy the inforτnation needs of users in the big data era,the personalized recommender system has been widely used.Collaborative filtering is a simple and effective recommendation algorithm.However,most traditional similarity methods only compute the similarity based on the users'co-rated scores.In addition,they are not very suitable in sparse data environment.This paper proposed a new similarity method based on Bhattacharyya coefficient.lt uses all users'rating information for items,which can not only obtain similar interest feature of users through the user'srating behavior,but also obtain the correlation between the items that the users have rated.Meanwhile,the new methodalso takes into account each user's rating preference,since different users have different rating habits.Considering more relevant factor about user similarity,more appropriate neighborhood can be selected for the target users,efficiently improving the recommendations.With experiments on two real data sets,the results show that our method outperforms the other state-of-the-art similarity metrics.
作者 臧雪峰 刘天琦 孙小新 冯国忠 张邦佐 ZANG Xue-feng;LIU Tian-qi;SUN Xiao-xin;FENG Guo-zhong;ZHANG Bang-zuo(College of Computer Science and Information Technology,Northeast Normal University,Changchun130117,China)
出处 《计算机科学》 CSCD 北大核心 2017年第12期52-57,共6页 Computer Science
基金 国家自然科学基金项目(71473035 11501095) 吉林省科技厅重点攻关项目(20150204040GX) 吉林省发改委项目(2015Y055) 东北师范大学自然科学基金项目(2014015KJ004)资助
关键词 协同过滤 BHATTACHARYYA系数 项目相关性 许分偏好 Cllaborative filtering Bhattacharyya coefficient ltem correlation User preference
  • 相关文献

参考文献4

二级参考文献53

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 3Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 4Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 5Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 6Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.
  • 7Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508.
  • 8Vincent S-Z,Boi Faltings.Using hierarchical clustering for learning the ontologies used in recommendation systems//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:599-608.
  • 9Park S-T,Pennock D M.Applying collaborative filtering techniques to movie search for better ranking and browsing//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:550-559.
  • 10Sarwar B,Karypis G,Konstan J,Reidl J.Item-based collaborative filtering recommendation algorithms//Proceedings of the 10th International Conference on World Wide Web.Hong Kong,China,2001:285-295.

共引文献945

同被引文献48

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部