期刊文献+

云计算环境下低成本存储科学数据的演化CTT-SP算法 被引量:1

Evolutionary CTT-SP Algorithm for Cost-effectively Storing Scientific Datasets in Cloud
下载PDF
导出
摘要 云计算系统强大的计算能力和存储容量,使得科学家可以在其上部署计算型和数据密集型的应用,并把大量的应用数据存储在云计算环境下。基于云服务即用即付模型,针对原有数据存储状态,考虑云服务价格变化所产生的状态调整成本,同时为降低存储大量生成的科学数据的成本,在传统最小成本基准的CTT-SP算法的基础上,提出了一种演化CTT-SP算法。在云计算环境下针对云服务的新价格,该算法可自动决定所生成的科学数据是否需要存储,从而使计算和存储达到更佳的平衡。以亚马逊的成本模型为例,对大量随机数据集进行实验,结果表明,当云服务价格变化后,所提演化CTT-SP算法有效地降低了存储科学数据的总成本。 Massive computation power and storage capacity of cloud computing systems allow scientists to deploy computation and data intensive applications in the cloud,where large application datasets can be stored.Based on the cloud service's pay-as-you-go model,taking the status adjustment cost caused by cloud service's price changes into consideration for the original datasets storage status,we proposed an evolutionary CTT-SP algorithm based on the traditional minimum cost benchmarking CTT-SP algorithm for cost-eHectively storing large volume of generated scientific datasets in the cloud.The algorithm can automatically decide whether a generated dataset should be stored or not in the cloud,and also achieve better trade-off between computation and storage at the new price.Random simulations conducted with Amazon's cost model show that the proposed evolutionary CTT-SP algorithm can save the overall cost of storing scientific datasets significantly when the cloud service's price changes.
作者 郭梅 袁栋 杨耘 GUO Mei;YUAN Dong;YANG Yun(School of Computers.Guangdong University of Technology,Guangzhou510006,China;School of Electrical and Information Engineering,The University of Sydney,Sydney 2006,Australia;School of Software and Electrical Engineering,Swinburne University of Technology,Melbourne 3122,Australia)
出处 《计算机科学》 CSCD 北大核心 2017年第12期163-168,共6页 Computer Science
基金 广东省产学研重点项目(2014XYD-007) 广东省科技计划项目(2012B091000173)资助
关键词 数据存储 计算存储平衡 云计算 科学应用 成本 Datasets storage Computation-storage trade-off Cloud computing Scientific application Cost
  • 相关文献

参考文献1

二级参考文献49

  • 1Leavitt N. Is Cloud Computing Really Ready for Prime Time? [J]. IEEE Computer Society Press, 2009,42 ( 1 ) :15 20.
  • 2Armbrust M, Fox A, Grith R, et al. Above the clouds:A Berkeley View of Cloud Computing[R]. UCB/EECS-2009-28. Berkeley, USA:Electrical Engineering and Computer Sciences, University of California at Berkeley, 2009.
  • 3Vaquero L, Rodero-Marino L, Caceres J, et al. A break in the clouds: towards a cloud definition [J]. SIGCOMM Computer Communication Review, 2009,39 ( 1 ) : 50-55.
  • 4Lenk A,Klems M, Nimis J, et al. What' s inside the Cloud? An Architectural Map of the Cloud Landscape[C]//Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing. 2009 : 23-31.
  • 5Amazon Web Services[EB/OL]. http://aws, amazon, corn/.
  • 6Hadoop[EB/OL]. http://hadoop, apache, org/core.
  • 7Dean J, Ghemawat S. MapReduce: Simplied data processing on large clusters[C]//Proceedings of the 6th Symposium on Operating Systems Design and Implementation. San Francisco, CA, 2004,11(18):137-150.
  • 8Hbase[EB/OL]. http://hadoop, apache, org/hbase/.
  • 9Zookeeper[EB/OL]. http://hadoop, apache, org/zookeeper/.
  • 10Google app engine[EB/OL]. http://appengine, google, com.

共引文献434

同被引文献13

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部