期刊文献+

基于布谷鸟搜索算法的用户选择和干扰对齐 被引量:2

User Selection Based on Cuckoo Search Algorithm and Interference Alignment
下载PDF
导出
摘要 为了实现蜂窝系统中单小区边缘用户正常通信,减少相邻小区间多个边缘用户对本小区边缘用户造成的干扰,提出了一种基于布谷鸟搜索算法的用户选择和干扰对齐算法。该算法首先用布谷鸟搜索算法对小区边缘用户进行选择,接着采用干扰对齐方法消除相邻小区间的干扰,最后通过预编码和基于最小均方差(MMSE)译码方法消除小区内用户间的干扰。该布谷鸟搜索算法与快速排序搜索算法相比具有更低的时间复杂度。数值分析表明与基于迫零算法的译码方法相比,该译码方法能够提高系统容量2 b·s^(-1)·Hz^(-2),改善误码率4 dB。 In cellular system,to reduce the interference of the cell-edge users and ensure communication among the cell-edge users of a single cell,a user selection scheme based on cuckoo search algorithm and interference alignment algorithm is proposed.First,the cell-edge users are selected by the cuckoo search algorithm.Then interference alignment scheme is adopted to eliminate interference.Finally,an encoding and decoding based on MMSE criterion are applied to eliminate interference among users.Compared with the quick sort search algorithm,the proposed scheme based on cuckoo search algorithm has less time complexity.And numerical results show that,compared to zero-forcing decoding,the proposed algorithm will increase the system capacity by2b?s?1?Hz?2,and the bit error rate improvement is about4dB.
作者 肖海林 张文娟 聂在平 王茹 XIAO Hai-lin;ZHANG Wen-juan;NIE Zai-ping;WANG Ru(Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing (Guilin University of Electronic Technology) Guilin Guangxi 541004;National Mobile Communications Research Laboratory, Southeast University Nanjing 210096;Guangxi Experiment Center of Information Science Guilin Guangxi 541004;School of Electronic Engineering, University of Electronic Science and Technology of China Chengdu 610054)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2017年第6期801-805,818,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61261018 61472094) 广西自然科学基金杰出青年基金(2014GXNSFGA118007) 广西自然科学基金重点项目(2011GXNSFD018028) 东南大学移动通信重点实验室开放基金(2015D05)
关键词 布谷鸟搜索算法 编码和译码 干扰对齐 系统容量 cuckoo search algorithm encoding and decoding interference alignment system capacity threshold
  • 相关文献

参考文献1

二级参考文献19

  • 1Yang X, Deb S. Cuckoo search via Ltvy flights[C]. World Congress on Nature & Biologically Inspired Computing. Piscataway: IEEE Publications, 2009: 210-214.
  • 2Civicioglu E Besdok E. A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms[J]. Artificial Intelligence Review, 2011, 39(4): 315-346.
  • 3Yang X S, Deb S. Engineering optimization by cuckoo search[J]. Int J of Mathematical Modelling and Numerical Optimization, 2010, 1(4): 330-343.
  • 4Gandomi A, Yang X, Alavi A. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems[J]. Engineering with Computers, 2013, 29(29): 17-35.
  • 5Valian E, Mohanna S, Tavakoli S. Improved cuckoo search algorithm for feed forward neural network training[J]. Int J of Artificial Intelligence & Applications, 2011, 2(3): 36- 43.
  • 6Marichelvam M K. An improved hybrid cuckoo search(IHCS) metaheuristics algorithm for permutation flow shop scheduling problems[J]. Int J of Bio-Inspired Computation, 2012, 4(4): 200-205.
  • 7Chandrasekaran K, Simon S P. Multi-objective scheduling problem: Hybrid approach using fuzzy assisted cuckoosearch algorithm[J]. Swarm and Evolutionary Computation, 2012, 5(9): 1-16.
  • 8Zhang Y, Wang L, Wu Q. Modified adaptive cuckoo search algorithm and formal description for global optimization[J]. Int J of Computer Applications in Technology, 2012, 44(2): 73-79.
  • 9B/ick T. Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary programming, genetic algorithms[M]. Oxford: Oxford University Press, 1996: 161-164.
  • 10Winfree R. Cuckoos, cowbirds and the persistence of brood parasitism[J]. Trends in Ecology & Evolution, 1999, 14(9): 338-343.

共引文献71

同被引文献17

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部