期刊文献+

自然语言处理中的深度学习:方法及应用 被引量:57

Deep Learning in NLP:Methods and Applications
下载PDF
导出
摘要 该文围绕特征表示和模型原理,以神经网络语言模型与词向量作为深度学习与自然语言处理结合的切入点,概述了当前主要深度神经网络的模型原理和相关应用。之后综述了当前研究人员在自然语言处理热点领域上所使用的最新深度学习方法并及所取得的成果。最后总结了深度学习方法在当前自然语言处理研究应用中所遇到的瓶颈,并对未来可能的研究重点做出展望。 With the rise of deep learning waves,the full force of deep learning methods has hit the Natural Language Process(NLP)and ushered in amazing technological advances in many different application areas of NLP.In this article,we firstly present the development history,main advantages and research situation of deep learning.Secondly,in terms of both feature representation and model theory,we introduces the neural language model and word embedding as the entry point,and present an overview of modeling and implementations of Deep Neural Network(DNN).Then we focus on the newest deep learning models with their wonderful and competitive performances related to different NLP tasks.At last,we discuss and summarize the existing problems of deep learning in NLP with the possible future directions.
作者 林奕欧 雷航 李晓瑜 吴佳 LIN Yi-ou;LEI Hang;LI Xiao-yu;WU Jia(School of Information and Software Engineering, University of Electronic Science and Technology of China Chengdu 610054)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2017年第6期913-919,共7页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61502082) 中央高校基本科研业务费(ZYGX2014J065)
关键词 深度学习 深度神经网络 语言模型 自然语言处理 词向量 deep learning deep neural networks language models nature language process word embedding
  • 相关文献

参考文献3

二级参考文献103

  • 1王厚峰,梅铮.鲁棒性的汉语人称代词消解[J].软件学报,2005,16(5):700-707. 被引量:36
  • 2MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 3MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 4李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 510 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 6Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 7Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 8Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 9Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 10LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.

共引文献895

同被引文献403

引证文献57

二级引证文献331

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部