摘要
Well‐aligned zinc oxide(ZnO)nanotube arrays loaded with tungsten trioxide(WO3)nanoparticles were synthesized by a process involving chemical bath deposition in combination with pyrolysis.The prepared ZnO–WO3composites were characterized by X‐ray diffraction,energy dispersive spectrometer,field emission scanning electron microscopy,X‐ray photoelectron spectroscopy,photoluminescence spectroscopy,Fourier transform infrared spectroscopy and UV–vis diffuse reflectance spectroscopy.The photocatalytic activities of the ZnO–WO3composite photocatalysts with different WO3contents for the degradation of the herbicide chlorinated phenoxyacetic acid(MCPA‐Na)under simulated sunlight irradiation were systematically evaluated.It was found that the WO3content had a great effect on the photocatalytic activity of the ZnO–WO3composites.The composite with3%WO3showed the highest photocatalytic activity,with a degradation rate of chlorinated phenoxyacetic acid of98.5%after200min with20mg of photocatalyst.This photodegradation rate was about twice that of the pristine ZnO nanotube array.The recombination of photogenerated electrons and holes was increasingly suppressed with the addition of WO3to ZnO.The high relative content of defects on the surface of the ZnO–WO3composites was beneficial to their photocatalytic activity in the degradation of chlorinated phenoxyacetic acid.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
二甲四氯钠(MCPA-Na)是一种广泛用于牧场和果园的除草剂,但由于其生物降解性极低,已成为地下水和浅水中的主要污染物.研究发现,半导体可以有效地辅助降解转化危险化学品.ZnO纳米管因其中空结构和较大的比表面积,而在光催化降解有机物方面备受关注.但是,ZnO只能吸收紫外光,如果将其与窄带隙半导体进行复合,可以有效降低带隙,增强其在可见光区域的光吸收,表现出更好的光催化性能.WO_3是一种具有稳定物理化学性质及耐光腐蚀窄带隙半导体.采用WO_3修饰ZnO纳米管,能扩展ZnO吸收光的范围以及提高ZnO纳米管的耐光腐蚀性能.本文首先通过电化学合成的方法制备了ZnO纳米管,然后按照不同的W/Zn摩尔比将(NH4)6H2W12O40·XH2O滴加在纳米管表面,并在450°C下退火2 h制得ZnO-WO_3纳米管阵列.研究了不同WO_3含量的ZnO-WO_3纳米管光催化降解MCPA-Na性能,并且通过X射线光电子能谱(XPS)、傅里叶红外光谱仪(FTIR)、紫外可见光谱(UV-Vis)和光致发光光谱(PL)等手段研究了复合WO_3纳米颗粒后ZnO纳米管半导体光催化性能提高的原因.XPS结果表明,W元素在ZnO-WO_3纳米管阵列中以W6+的形式存在.FTIR结果表明,复合WO_3后的ZnO-WO_3复合半导体上比纯ZnO纳米管表面具有更多的-OH基团.由于-OH可以捕获光生空穴,并转化为具有反应活性的OH自由基,因此复合WO_3能在一定程度上提高ZnO纳米管的光催化活性.UV-Vis结果表明,WO_3的复合使得光谱发生明显红移,但随着WO_3含量的增加,ZnO-WO_3的吸光度明显增加.另外,PL结果表明,适当的复合WO_3可以抑制光生电子-空穴的复合.这是因为W6+和晶格氧的相互作用产生了较高不饱和键和表面缺陷,而表面缺陷可以作为光生载流子的陷阱,促进了光生电子和空穴的分离,因而光催化性能提高.在模拟太阳光下研究了不同WO_3含量的ZnO纳米管对光催化降解MCPA-Na溶液的性能.发现W/Zn摩尔比为3%的ZnO-WO_3样品表现出最好的光催化活性,200 min内其降解率为98.5%.与纯ZnO纳米管相比,其光催化循环性能也有所提高.利用Mott-Schottky测试方法并结合UV-vis结果,我们计算得到不同WO_3含量的ZnO-WO_3复合半导体导带价带位置.由于WO_3导带位置和价带位置都比ZnO的更高,WO_3上产生的光生电子会向ZnO的导带移动,而ZnO光生空穴向WO_3的价带移动,从而促使光生电子和空穴的分离,提高了光催化性能.但是如果WO_3复合的量太大,则在ZnO纳米管上分散性不好,反而成为光生空穴和电子复合中心,导致其光催化活性降低.
基金
supported by the National Natural Science Foundation of China(51574071)~~