期刊文献+

New design for multi-crystal data collection at SSRF

New design for multi-crystal data collection at SSRF
下载PDF
导出
摘要 Data collection with microcrystals at synchrotron radiation facilities is challenging because it is difficult to harvest and locate microcrystals. Moreover,microcrystals are sensitive to radiation damage; thus, typically, a complete data set cannot be obtained with a single microcrystal. Herein, we report a new method for data collection with multiple microcrystals having a crystal size ranging from 1 to 30 lm. This method is suitable for not only low-temperature(100 K) data collection but also room-temperature data collection. Thin Kapton membranes were used to capture multiple crystals simultaneously. The microcrystals were visible under an optical microscope and easily located because the membrane was transparent and sufficiently thin. The film was fixed to a bracket that was prepared using a three-dimensional printer. The bracket was fixed on a magnetic base via screwing and employed by the goniometer system for data collection. Multiple data sets of fatty acid-binding protein 4(FABP4) and lysozyme microcrystals were collected using this novel designed device. Finally, the structures of protein FABP4 and lysozyme were obtained from these data via the molecule replacement method. The data statistics reveal that this method provides a comparable result to traditional methods such as a nylon loop. Data collection with microcrystals at synchrotron radiation facilities is challenging because it is difficult to harvest and locate microcrystals. Moreover,microcrystals are sensitive to radiation damage; thus, typically, a complete data set cannot be obtained with a single microcrystal. Herein, we report a new method for data collection with multiple microcrystals having a crystal size ranging from 1 to 30 lm. This method is suitable for not only low-temperature(100 K) data collection but also room-temperature data collection. Thin Kapton membranes were used to capture multiple crystals simultaneously. The microcrystals were visible under an optical microscope and easily located because the membrane was transparent and sufficiently thin. The film was fixed to a bracket that was prepared using a three-dimensional printer. The bracket was fixed on a magnetic base via screwing and employed by the goniometer system for data collection. Multiple data sets of fatty acid-binding protein 4(FABP4) and lysozyme microcrystals were collected using this novel designed device. Finally, the structures of protein FABP4 and lysozyme were obtained from these data via the molecule replacement method. The data statistics reveal that this method provides a comparable result to traditional methods such as a nylon loop.
出处 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第2期48-56,共9页 核技术(英文)
基金 supported by the Strategic Priority Research program of the Chinese Academy of Sciences(No.XDB08030101)
关键词 KAPTON membrane MICROCRYSTALS Multicrystal data COLLECTION Protein structure Kapton membrane Microcrystals Multicrystal data collection Protein structure
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部