摘要
全能近似研究方法研究傅立叶变换是有益的和必要的。当全能近似傅立叶积分变换的极限几乎处处存在时,称这个极限为原来函数的理想变换。傅立叶积分变换中"卷积定理"的证明过程,要用到"交换两个无穷限积分顺序"的步骤。在"绝对准"研究的要求下,这种积分顺序的交换对"被积函数"有很高的要求条件,可以解决现行的绝对准的理论体系的傅立叶积分变换。
It is helpful and necessary to study the Fourier integral transformation of the allometric approximation method.The limit of the allotopic approximation Fourier integral transformation is almost everywhere,and this limit is called the ideal transformation of the original function.Fourier integral transformation in the“convolution theorem”proof of the process,to use the“transformation of two infinity integral order”step.Under the requirement of“absolute quasi-”research,the exchange of this order of points has a high demand condition for the“product integrators,”which can solve the Fourier integral transformation of the existing absolute theoretical system.
作者
尚晓明
SHANG Xiaoming(Jiaozuo University,Jiaozuo454003,China)
出处
《焦作大学学报》
2017年第4期78-80,共3页
Journal of Jiaozuo University
关键词
卷积定理
逆变换
全能近似研究方法
全能近似函数
全能近似傅立叶积分变换
convolution theorem
inverse transformation
all -around approximation method
all -around approximation function
all-around approximation Fourier integral transform