期刊文献+

带有接种的随机SIS传染病模型研究 被引量:3

Stochastic SIS Epidemic Model with Vaccination
下载PDF
导出
摘要 研究了一类带有接种的随机SIS传染病模型.利用非负半鞅收敛定理这种简单而有效的方法找到了随机模型的阈值R_0.R_0决定了疾病的灭绝和流行.当R_0<1时,疾病灭绝;当R_0>1时,模型的解在时间均值意义下趋于一点,即此时疾病将流行. A stochastic version of the delayed SIS epidemic model with vaccination was concerned.A simple but effective method was provided for estimating the threshold of a class of stochastic epidemic models by use of the nonnegative semimartingale convergence theorem.The threshold of the stochastic delayed model,denoted by R^0,completely determines the extinction and prevalence of the disease.If R^0<1,the disease ultimately vanishes from the population with probability one.If R^0>1,the system is proved to be convergent to a point in the meaning of time mean.
作者 周艳丽 濮桂萍 沈新娣 ZHOU Yanli;PU Guiping;SHEN Xindi(College of Arts and Science,Shanghai University of Medicine and Health Sciences,Shanghai 201318,China;School of Nursing and Health Mangement,Shanghai University of Medicine and Health Sciences,Shanghai 201318,China)
出处 《上海理工大学学报》 北大核心 2017年第6期528-531,共4页 Journal of University of Shanghai For Science and Technology
关键词 随机SIS传染病模型 阈值 接种 灭绝性 持续 stochastic SIS epidemic model threshold vaccination extinction persistence
  • 相关文献

同被引文献24

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部