期刊文献+

线性变换张量积的Jordan-Chevalley分解

Jordan-Chevalley Decomposition of the Tensor Product of Linear Transformations
下载PDF
导出
摘要 研究了线性变换张量积的Jordan-Chevalley分解相关理论.首先利用矩阵表示来讨论2个线性变换张量积的一些基本性质,接着证明了2个线性变换张量积的Jordan-Chevalley分解的唯一存在性,最后利用这些结论给出了Jordan-Chevalley分解的具体表达式. In order to study the Jordan Chevalley decomposition theory of the tensor product of linear transformations,it was suggested to discuss firstly some properties of the tensor product of two linear transformations via its matrix representation,then prove the unique existence of such decomposition,and give a specific expression.
作者 胡建华 曾博文 王资敏 HU Jianhua;ZENG Bowen;WANG Zimin(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《上海理工大学学报》 北大核心 2017年第6期539-541,548,共4页 Journal of University of Shanghai For Science and Technology
基金 上海理工大学教师教学发展研究基金资助项目(CFTD17015Z CFTD17016Z)
关键词 张量积 矩阵表示 JordanChevalley分解 tensor product matrix representation Jordan Chevalley decomposition
  • 相关文献

参考文献3

二级参考文献22

  • 1Purbhoo K.Compression of root systems and the Esequence[J].The Electronic Journal of Combinatorics,2008,15(1):26-46.
  • 2Wildberger N J.A combinatorial construction for simply-laced Lie algebras[J].Adv Appli Math,2003,30 (5):385-396.
  • 3Humphreys J E.Introduction to Lie algebras and representation theory[M].New York:springer-Verlag,1972.
  • 4田丽,胡建华.有限域上型Dn,E6,E7,E8,F4的Chevalley群之间的同态[D].上海:上海理工大学,2011.
  • 5Purbhoo K,Sottile F.The recursive nature of cominuscule Schubert calculus[J].Adv Math,2008,217(5):1962-2004.
  • 6Godsil C,Royle G.Algebraic graph theory[M].New York:Springer-Verlag,2001.
  • 7Wildberger N J.Minusculeposets from neighbourly graph sequences[J].European J Cominatorics,2003,24(6):741-757.
  • 8Belkale P,Kumar S.Eigenvalue problem and a new product in cohomology of flag varieties[J].Invent Math,2006,166 (1):185-228.
  • 9Stembridge J R.On minuscule representations,plane partitions and involutions in complex Lie groups[J].Duke Math J,1994,73(2):469-490.
  • 10Schneider C. A computer-based approach to the classification of nilpotent Lie algebras E J ]. Experimental Mathematics, 2005,14(2) : 153 - 160.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部