期刊文献+

基于t函数的稳健变量选择方法 被引量:2

Robust Variable Selection Method Based on t Function
下载PDF
导出
摘要 在已有研究的基础上,提出一种新的基于t函数的稳健变量选择方法.该方法通过惩罚估计方程中的惩罚函数达到变量选择的效果,方程中的权重矩阵和有界得分函数对自变量和因变量中的异常值有很好的限制作用,可同时达到稳健的变量选择和稳健估计.通过分析3种不同自由度的t函数性质,选取自由度为2的t函数,并与基于Huber函数的稳健变量选择方法进行比较.数值模拟结果表明,基于t函数的稳健变量选择方法在2种污染力度、3种污染方式的数据污染情况下,其稳健性均明显优于基于Huber函数的稳健变量选择方法.与参数估计效果相比,基于t函数的稳健变量选择方法优势更明显. On the basis of existing research results,a new method for robust variable selection based on t function was proposed.The method achieves variable selection by the penalized function in the penalized estimating equation.Meanwhile,through the weight matrix and the bounded score function in the equation,the proposed method has a satisfactory resistance to outliers in independent variables and dependent variables,and can achieve the robust variable selection and estimation simultaneously.By analyzing the properties of t functions with3different kinds of degree of freedom,a t function with2degrees of freedom was used,and the method was compared with the Huber function based on robust variable selection method.The numerical simulation results show that,when data are contaminated with outliers by two kinds of contamination degree and three kinds of contamination mode,the proposed robust variable selection method based on t function performs better than that based on the Huber function,especially in variable selection.
作者 钟先乐 樊亚莉 张探探 ZHONG Xianle;FAN Yali;ZHANG Tantan(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《上海理工大学学报》 北大核心 2017年第6期542-548,共7页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11401383)
关键词 稳健性 变量选择 惩罚函数 估计方程 robustness variable selection penalized function estimating equation
  • 相关文献

参考文献1

二级参考文献17

  • 1樊亚莉,王林平.AR(1)模型下F检验的性质[J].上海理工大学学报,2005,27(4):295-299. 被引量:1
  • 2Miller A. Subset selection in regression[M]. London: Chapman and Hall,2002.
  • 3FungWK, Zhu Z Y, Wei B C, et al. Influence diagnostics and outlier tests for semiparametric mixed models[J]. Journal of Royal Statistical Society, Ser B, 2002,64(2) : 565 - 579.
  • 4Fan J, Li R. Varible selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001,96 (456) : 1348 - 1360.
  • 5Tibshirani R. Regression shrinkage and selection via the lasso [J]. Journal of Royal Statistical Society, 1996,58(1) :267- 288.
  • 6DonohoDL. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994,81(3) : 425 - 455.
  • 7Zou H. Regulariztion and variable selection via the elastic net[J]. Journal of Royal Statistical Society, Ser B,2005,67(2) :301 - 320.
  • 8Zou H. The adaptive lasso and its oracle properties [J]. Journal of American Statistical Association, 2006, 101(475) : 1418 - 1429.
  • 9Fan J. A selective overview of variable selection in high dimensional feature space[J]. Statistica Sinica, 2010,20(1) : 101 - 148.
  • 10Preisser J S. Robust regression for clustered data with application to binary responses[J]. Biometrics, 1999, 55(2) :574 - 579.

共引文献2

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部