期刊文献+

结合导向滤波和最大概率的高光谱图像分类 被引量:1

A Hyperspectral Image Classification Method Combined with Guided Filter and Maximum Probability
下载PDF
导出
摘要 针对利用滤波器提取高光谱图像的空间特征辅助光谱信息来提高高光谱图像分类精度的不足,提出导向滤波提取的空间纹理信息和最大概率结合的高光谱图像分类算法(SGD-SVM-GD)。鉴于空间纹理信息挖掘不足,该方法首先利用导向滤波提取由主成分分析降维后的高光谱图像空间纹理特征,然后将空间信息与光谱信息结合,交由支持向量机完成分类得到初始分类结果,最后结合导向滤波和概率最大化优化分类结果。实验表明,相比单纯使用光谱信息、纯空间信息和空谱结合的SVM分类方法以及边缘保持滤波的方法,所提出的SGDSVM-GD方法对高光谱图像的分类精度有较大提高,表明了该方法的有效性。 Aiming at the deficiency of supplementing spectral information with spatial information obtained by filter to improve the classification of hyperspectral image,an improved scheme was put forward according to existent methods.In view of the insufficient of spatial texture information extraction,the paper proposed an algorithm of supervised classification which was combined with spatial information obtained by guided filter and the maximum probability.Firstly,the method extracted the spatial feature of hyperspectral image whose dimensionality was reduced by PCA.Secondly,the spatial information and spectral information were combined together,which were classified by SVM.Finally,the classification was optimized by the guided filter and the maximum probability.The experiments show that the BS SVM algorithm is better than original SVM with the pure spectrum information,the pure spatial information,the spatial spectral information,and the method of edge preserving filtering.The performance of the classification with SGD SVM GD algorithm for hyperspectral image is greatly improved,and the effectiveness of the method is fully verified.
作者 廖建尚 王立国 LIAO Jianshang;WANG Liguo(School of Computer Engineering,Guangdong Communication Polytechnic,GuangZhou 510650,China;College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)
出处 《遥感信息》 CSCD 北大核心 2017年第6期56-64,共9页 Remote Sensing Information
基金 国家自然科学基金(61275010 61675051) 国家星火计划项目(2014GA780056) 广东省科技计划项目(2017ZC0358) 广东交通职业技术学院校级重点科研项目(2017-1-001) 广东省高等职业教育品牌专业建设项目(2016gzpp044)
关键词 高光谱图像 分类 空谱结合 导向滤波 最大概率 hyperspectral image classification spatial spectral guided filter maximum probability
  • 相关文献

参考文献2

二级参考文献41

  • 1李慧,王云鹏,李岩,王兴芳.基于SVM和PWC的遥感影像混合像元分解[J].测绘学报,2009,38(4):318-323. 被引量:15
  • 2金义雄,程浩忠,严健勇,张丽.改进粒子群算法及其在输电网规划中的应用[J].中国电机工程学报,2005,25(4):46-50. 被引量:89
  • 3黄昕,张良培,李平湘.基于多尺度特征融合和支持向量机的高分辨率遥感影像分类[J].遥感学报,2007,11(1):48-54. 被引量:48
  • 4李海涛,顾海燕,张兵,高连如.基于MNF和SVM的高光谱遥感影像分类研究[J].遥感信息,2007,29(5):12-15. 被引量:31
  • 5FAUVEL M,BENEDIKTSSON J A,CHANUSSOT J,et al.Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(11): 3804-3814.
  • 6VELASCO-FORERO S,MANIAN V.Improving Hyperspectral Image Classification Using Spatial Preprocessing[J].IEEE Transactions on Geoscience and Remote Sensing Letters,2009,6(2): 297-301.
  • 7CUI Minshan,PRASAD S,LI Wei,et al.Locality Preserving Genetic Algorithms for Spatial-spectral Hyperspectral Image Classification[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2013,6(3): 1688-1697.
  • 8CHEN Yi,NASRABADI N M,TRAN T D.Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery[J].IEEE Transactions on Geoscience and Remote Sensing Letters,2011,8(4): 676-680.
  • 9CHEN Yi,NASRABADI N M,TRAN T D.Hyperspectral Image Classification Using Dictionary-based Sparse Representation[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(10): 3973-3985.
  • 10CHEN Yi,NASRABADI N M,TRAN T D.Sparse Representation for Target Detection in Hyperspectral Imagery[J].IEEE Journal of Selected Topics in Signal Processing,2011,5(3): 629-640.

共引文献25

同被引文献23

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部