期刊文献+

吸收式制冷机组逆神经网络设定优化 被引量:2

A Set Point Optimization Method for Absorption Chiller Based on Inverse Neural Network
下载PDF
导出
摘要 针对吸收式制冷机组非线性、难以控制的特点,提出了一种基于逆神经网络模型的设定点优化方案。首先,以11.5kW单效溴化锂吸收式制冷机组为对象,使用人工神经网络方法建立了机组模型,通过对溴冷机制冷原理的分析,建立了系统结构为5-6-2的网络模型,该神经网络模型的相关系数大于0.99且方均根误差小于0.2%,与实验数据取得了良好的拟合效果;然后,利用该模型对溴冷机的各个输入参数进行灵敏度分析,并据此选择热水供水温度与冷却水流量作为优化方法的控制输入参数;最后,以冷冻水输出温度作为系统控制输出,对其进行优化计算,并采用改进的粒子群优化算法与逆神经网络相结合的方法,计算制冷机组的最优控制输入参数。通过实验与仿真分析,可知该算法的计算时间在30s以内,低于吸收式制冷机组的稳定时间;溴冷机的目标输出与仿真计算结果间的误差小于0.02%,表明该方案可以应用于吸收式制冷机组的在线控制。 In view of the nonlinearity and difficulty in control of absorption chiller,a set point optimization method based on inverse neural network model is proposed.Firstly,taking an115kW single effect lithium bromide absorption chiller as the research object,an artificial neural network method is used to establish a model of the unit.Through the analysis of the chiller,a network model with a562structure is established.The correlation coefficient of the neural network model is more than099and the root mean square error is less than02%,so the experimental data are well fitted.Subsequently,the sensitivity analysis of each input parameter of the chiller is conducted to select the hot water supply temperature and the cooling water flow rate as the control input parameters to be estimated.Finally,as the control output of the system,the chilled water output temperature is optimized.The optimal control input parameters of the chilling system are estimated by combination of an improved particle swarm optimization and the inverse neural network algorithm.Through the analysis of experiment and simulation,the calculation time of this method is within30s,which is shorter than the stable time of absorption chiller.Moreover,the error between target output and simulation calculation is less than002%.These results show that the proposed scheme is suitable for online control of absorption chiller.
作者 王亚昆 吴爱国 董娜 WANG Yakun;WU Aiguo;DONG Na(School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2018年第1期123-128,142,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61403274) 天津市智能制造科技重大专项资助项目(15ZXZNGX00160)
关键词 吸收式制冷机 神经网络 粒子群优化 在线评估 absorption chiller neural network particle swarm optimization online estimation
  • 相关文献

参考文献3

二级参考文献33

  • 1靳华栋,孙淑凤,王立.吸收式制冷用氨-硝酸锂工质对及循环系统的研究[J].低温与超导,2007,35(1):65-68. 被引量:8
  • 2张吉礼,孙德兴.舒适性空调系统模糊控制的研究[J].制冷学报,1996(3):37-44. 被引量:4
  • 3李士勇.模糊控制·神经网络和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1996,10..
  • 4MCMULLAN J. Refrigeration and the environment is- sues and strategies for the future [J]. International Journal of Refrigeration, 2002, 25 (1):89-99.
  • 5STEIU S, SALAVERA D, BRUNO J, et al. A basis for the development of new ammonia-water-sodium hydroxide absorption chillers[J]. International Journal of Refrigeration, 2009, 32(4):577-587.
  • 6BALAMURU V, IBRAHIM O, BARNETT S. Simu lation of ternary ammonia-water-salt absorption refrig eration cycles[J]. International Journal of Refrigeration, 2000, 23(1):31-42.
  • 7OLBERT-MAJKUT A, MIERZWICKI K, MIELKE Z. Theoretical studies of cooperativity effects in the ternary complexes of nitrous acid with ammonia and water[J]. Journal of Molecular Structure, 2005, 738 (1/3) : 193-203.
  • 8SUN D. Comparison of the performances of NH3- H2O, NH3-LiNO3 and NHa NaSCN absorption refrigeration systems[J]. Energy Convers, 1998, 39 (5): 357-368.
  • 9AHLBY L, HODGETT D, RADERMACHER R. NH3-H2O-LiBr as working fluid for the compression/ absorption cycle [J]. International Journal of Refrige ration, 1993, 16(4):65-73.
  • 10WU Yuyuan, CHEN Yan, WU Tiehui. Experimental researches on characteristics of vapor-liquid equilibrium of NHa-H2O-LiBr system [J]. International Journal of Refrigeration, 2006, 29(2) :328-335.

共引文献17

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部