期刊文献+

Optimal feedback based control for Mars entry trajectory tracking

Optimal feedback based control for Mars entry trajectory tracking
下载PDF
导出
摘要 The various uncertainties of Mars environment have great impact on the process of vehicles entering the atmosphere.To improve the robustness of control system against the model errors and to reduce the computational burden, an optimal feedback based tracking control law is developed. The control scheme presented in this paper determines the amplitude and the reversals of bank angle respectively in the longitudinal and lateral flight plane. At each control cycle, the amplitude of the bank angle is obtained by an optimal feedback controller to minimize tracking errors. The control gains are tuned according to the closed-loop error dynamics by using optimization methods. The bank reversals are executed if the crossrange exceeds a predetermined corridor which is designed by setting a boundary function. The accuracy and robustness of the proposed closed-loop optimal feedback based control law in tracking the reference trajectory is verified via500 deviation simulations, in which modeling errors and external disturbances are considered. The various uncertainties of Mars environment have great impact on the process of vehicles entering the atmosphere.To improve the robustness of control system against the model errors and to reduce the computational burden, an optimal feedback based tracking control law is developed. The control scheme presented in this paper determines the amplitude and the reversals of bank angle respectively in the longitudinal and lateral flight plane. At each control cycle, the amplitude of the bank angle is obtained by an optimal feedback controller to minimize tracking errors. The control gains are tuned according to the closed-loop error dynamics by using optimization methods. The bank reversals are executed if the crossrange exceeds a predetermined corridor which is designed by setting a boundary function. The accuracy and robustness of the proposed closed-loop optimal feedback based control law in tracking the reference trajectory is verified via500 deviation simulations, in which modeling errors and external disturbances are considered.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期134-141,共8页 系统工程与电子技术(英文版)
基金 supported by the National Natural Science Foundation of China(11372345)
关键词 optimal control feedback gains Mars entry trajectory tracking Pontryagin's minimum principle optimal control feedback gains Mars entry trajectory tracking Pontryagin's minimum principle
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部