期刊文献+

Fuel loading pattern optimization of a pressurized water reactor by varying internal weights-based particle swarm optimization

Fuel loading pattern optimization of a pressurized water reactor by varying internal weights-based particle swarm optimization
下载PDF
导出
摘要 Fuel reload pattern optimization is essential for attaining maximum fuel burnup for minimization of generation cost while minimizing power peaking factor(PPF).The aim of this work is to carry out detailed assessment of particle swarm optimization(PSO) in the context of fuel reload pattern search. With astronomically large number of possible loading patterns, the main constraints are limiting local power peaking factor, fixed number of assemblies,fixed fuel enrichment, and burnable poison rods. In this work, initial loading pattern of fixed batches of fuel assemblies is optimized by using particle swarm optimization technique employing novel feature of varying inertial weights with the objective function to obtain both flat power profile and cycle k_(eff)>1. For neutronics calculation, PSU-LEOPARD-generated assembly depletiondependent group-constant-based ADD files are used. The assembly data description file generated by PSU-LEOPARD is used as input cross-section library to MCRAC code, which computes normalized power profile of all fuel assemblies of PWR nuclear reactor core. The standard PSO with varying inertial weights is then employed to avoid trapping in local minima. A series of experiments havebeen conducted to obtain near-optimal converged fuelloading pattern of 300 MWe PWR Chashma reactor. The optimized loading pattern is found in good agreement with results found in literature. Hybrid scheme of PSO with simulated annealing has also been implemented and resulted in faster convergence. Fuel reload pattern optimization is essential for attaining maximum fuel burnup for minimization of generation cost while minimizing power peaking factor(PPF).The aim of this work is to carry out detailed assessment of particle swarm optimization(PSO) in the context of fuel reload pattern search. With astronomically large number of possible loading patterns, the main constraints are limiting local power peaking factor, fixed number of assemblies,fixed fuel enrichment, and burnable poison rods. In this work, initial loading pattern of fixed batches of fuel assemblies is optimized by using particle swarm optimization technique employing novel feature of varying inertial weights with the objective function to obtain both flat power profile and cycle k_(eff)>1. For neutronics calculation, PSU-LEOPARD-generated assembly depletiondependent group-constant-based ADD files are used. The assembly data description file generated by PSU-LEOPARD is used as input cross-section library to MCRAC code, which computes normalized power profile of all fuel assemblies of PWR nuclear reactor core. The standard PSO with varying inertial weights is then employed to avoid trapping in local minima. A series of experiments havebeen conducted to obtain near-optimal converged fuelloading pattern of 300 MWe PWR Chashma reactor. The optimized loading pattern is found in good agreement with results found in literature. Hybrid scheme of PSO with simulated annealing has also been implemented and resulted in faster convergence.
出处 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第3期61-70,共10页 核技术(英文)
关键词 PWR Loading pattern OPTIMIZATION PSO PPF In-core FUEL management PWR Loading pattern optimization PSO PPF In-core fuel management
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部