期刊文献+

一种基于免疫算法的盲信号分离算法

A blind signal separation algorithm based on immune algorithm
下载PDF
导出
摘要 针对现有盲源分离算法性能受限于非线性函数选择且算法实现复杂、计算量大的问题,文章提出了一种基于人工免疫算法的盲信号分离算法,达到满足实际应用中有效分离的需求。该算法不依赖于源信号概率密度的非线性函数估计,通过免疫算法最小化信号的互信息,实现对观测混合信号的分离。基于免疫算法的盲信号分离,利用免疫算法隐形并行处理,具有较好的全局搜索性能和易收敛到最优解的特点。仿真分析表明,与传统的ICA盲分离算法相比,所提出的算法对于多路混叠信号具有更好的分离效果。 In view of the confined performance and computational complexity problems of the existing blind source separation algorithms due to the choice of nonlinear functions,this paper proposes a blind source separation algorithm based on artificial immune algorithm for the purpose of the effective separation in practical application.The proposed algorithm does not depend on the estimation of probability density properties of the source signals,but implements mutual information minimum via immune algorithm to realize the blind separation of source signals.This algorithm utilizes immune algorithm's invisible parallel processing,and has the character of strong global search performance and easy to converge to the optimal solution.Simulation experiments and analysis show that the proposed algorithm has better separation performance for multi-channel mixed signals.
作者 何庆 骆忠强 He Qing;Luo Zhongqiang(Faculty of Eelectronical Engineering, Luzhou Vocational and Technical College, Luzhou, Sichuan 646000, China;Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering)
出处 《计算机时代》 2018年第3期42-45,49,共5页 Computer Era
基金 人工智能四川省重点实验室开放基金项目(2017RZJ01) 企业信息化与物联网测控技术四川省高校重点实验室开放基金项目(2017WZJ01) 四川理工学院人才引进项目(2017RCL11)
关键词 盲源分离 免疫算法 互信息 独立分量分析 blind source separation immune algorithm mutual information independent component analysis
  • 相关文献

参考文献10

二级参考文献172

  • 1杜海峰,公茂果,刘若辰,焦李成.自适应混沌克隆进化规划算法[J].中国科学(E辑),2005,35(8):817-829. 被引量:28
  • 2何为,杨基海,梁政,陈香.基于生理层肌电模型的表面肌电信号仿真方法[J].航天医学与医学工程,2005,18(6):446-450. 被引量:2
  • 3Kim J W, Integrating artificial immune algorithms for intrusion detection[D]. PhD dissertation, University of London, 2002.
  • 4Whitley L D, Starkweather T, Fuquay D. Scheduling problems and traveling salesman: the genetic edge recombination operator[C]// Proceedings of the 3rd International Conference on Genetic Algorithms. San Francisco:Morgan Kauffmann, 1989 : 133-140.
  • 5Reinelt G. TSPLIB-a traveling salesmarr problem library[J].ORSA Journal on Computing, 1991, 3(4) : 376-384.
  • 6Dorigo M, Maniezzo V, Colorni A. The ant system: optimization by a colony of cooperative learning approach to the traveling agents [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996, 26(1) :29-41.
  • 7Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies[C]// Proceedings of IEEE International Conference on Evolutionary Computation. Nagoya, Japan: IEEE Press, 1996:622-627.
  • 8Stutzle T, Hoos H. Max-min ant system and local search for the traveling salesman problem [C]// Proceedings of the 4th International Conference on Evolutionary Computation. Indianapolis: IEEE Press, 1997: 309-314.
  • 9de Castro L N, Timmis J. Artificial Immune Systems: A New Computational Intelligence Approach[M]. Heidelberg: Springer-Verlag, 2002.
  • 10Burnet F M.The Clonal Selection Theory of Acquired Immunity[M]. Cambridge: Cambridge University Press, 1959.

共引文献273

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部