期刊文献+

Web大数据系统数据源选择

Data Source Selection for Web Big Data System
下载PDF
导出
摘要 如何从数量众多的Web数据源集合中选择数量合适的数据源,使得在满足特定查询需求的前提下尽可能地减少访问数据源的数量,是Web大数据系统集成中的关键问题之一。提出了一个两阶段数据源选择方案:第一阶段通过各个数据源模式与中间模式的相似度选择与查询相关度高的数据源,通过计算依赖数据源的质量来选取质量较好的数据源;第二阶段基于最大熵理论计算数据源之间的重复率,设计实现了一个查询最小代价模型动态选择数据源算法。最后在实验平台上对算法进行了评估,实验表明该算法具有较高的效率与扩展性。 How to select the appropriate data source from the large number of Web data sources,so as to reduce the number of accessing data sources,is one of the key issues in the integration of Web big data system.This paper proposes a two-stage data source selection method.The first stage is to select the data source with the high similarity to the middle schema and select the data source with the high reliability by computing the quality of dependent data source.In the second stage,a time-cost minimization query algorithm is designed for source permutation.To calculate the repetition rate of the data source,the maximum entropy theory is applied in the algorithm.Finally,the algorithmis evaluated on the experimental platform.The experiments show that the proposed algorithm has high efficiency and scalability compared with other algorithms.
作者 刘正涛 王建东 LIU Zhengtao;WANG Jiandong(College of Computer Science and Engineering, Sanjiang University, Nanjing 210012, China;College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
出处 《计算机科学与探索》 CSCD 北大核心 2018年第3期360-369,共10页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金 No.61139002~~
关键词 WEB 大数据 数据源选择 数据源质量 数据源依赖 Web big data data source selection quality of data source dependence of data source
  • 相关文献

参考文献2

二级参考文献22

  • 1杜小勇,李曼,王珊.本体学习研究综述[J].软件学报,2006,17(9):1837-1847. 被引量:242
  • 2唐杰,梁邦勇,李涓子,王克宏.语义Web中的本体自动映射[J].计算机学报,2006,29(11):1956-1976. 被引量:98
  • 3刘强,黄涛,刘绍华,钟华.An Ontology-Based Approach for Semantic Conflict Resolution in Database Integration[J].Journal of Computer Science & Technology,2007,22(2):218-227. 被引量:4
  • 4Milad S. Central-rank-based collection selection in uncooperative distributed information retrieval [C] //Proc of the 29th European Conf on IR Research. Berlin: Springer, 2007:160-172.
  • 5Thomas P, Shokouhi M. SUSHI: Scoring scaled samples for server selection [C] //Proc of the 32nd Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2009:419-426.
  • 6Ipeirotis P G, Gravano L, Sahami M. Probe, count and classify: Categorizing hidden Web databases [C]//Proc of the ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2001:21-24.
  • 7Hong D, Si L, Bracke P, et ah A joint probabilistic classification model for resource selection [C] //Proc of the 33rd Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2010:98-105.
  • 8Liu V Z, Luo R C, Chu W W. Dpro: A probabilistic approach for hidden Web database selection using dynamic probing [C] /]Proc of the 20th Int Conf on Data Engineering. Los Alamitos, CA: IEEE Computer Society, 2004:1-12.
  • 9Yu B, Li G L, Sollins K, et al. Effective keyword based selection of relational databases [C] //Proc of the ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2007: 139-150.
  • 10Vu Q H, Qoi B C, Papadias D, et al. A graph method for keyword-based selection of the top-k databases [C] //Proc of 2008 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2008:915-926.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部