期刊文献+

黑莓渗糖过程中水分和溶质扩散的数学模型 被引量:1

Mathematical model of water and solute diffusion in blackberry during sugar osmotic dehydration process
下载PDF
导出
摘要 以黑莓-白糖固液体系为研究对象,研究了黑莓在不同条件糖溶液中的渗透脱水规律,得出了渗糖过程中水分和溶质扩散的数学模型。渗透液的质量分数选取40%、50%、60%,溶液的温度选取30、40、50℃,糖溶液和黑莓的质量比为10∶1,渗透脱水时间为0~5 h。利用AZUARA等提出的双组分系统数学模型得到了每种实验条件下黑莓样品最终渗透平衡状态时的失水率和固形物增加率,结果表明,在一定实验条件范围内,黑莓脱水率和固形物增加率均随渗透液浓度、渗透时间和溶液温度的增大而增大;同时使用菲克第二定律估算了每种试验条件下水分和糖的有效扩散系数,上述渗透条件下水分和糖的有效扩散系数分别在1.77×10^(-9)~2.10×10^(-9)m^2/s和1.36×10^(-9)~1.60×10^(-9)m^2/s范围内。 In this study,mass transfer during osmotic dehydration of blackberry in sugar solution was investigated. The osmotic solution concentrations were 40%,50% and 60%(w/w) of sugar,osmotic solution temperatures were 30 ℃,40 ℃ and 50 ℃,the solution-to-blackberry mass ratio was 10 ∶ 1(w/w) and the process duration varied from 0 to 5 hr. A two-parameter mathematical model developed by Azuara et al. was used for describing the mass transfer and estimating the final equilibrium water loss and solid gain. The results showed that the dehydration rate and solid gain rate of blackberry were increased with the increase of osmotic concentration,osmotic time and temperature under certain conditions. Effective diffusivity of moisture as well as solute was estimated by Fick's second law of diffusion. For above conditions of osmotic dehydration,water and sugar effective diffusivities were in the range of 1. 77 × 10^(-9)-2. 10 × 10^(-9) and 1. 36 × 10^(-9)-1. 60 × 10^(-9) m^2/s,respectively.
出处 《食品与发酵工业》 CAS CSCD 北大核心 2018年第2期68-74,共7页 Food and Fermentation Industries
基金 江苏省前瞻性联合研究项目(2016022-10)
关键词 黑莓 渗透脱水 传质 扩散系数 数学模型 blackberry osmotic dehydration mass transfer diffusivity mathematical model
  • 相关文献

参考文献7

二级参考文献88

  • 1张宝泉,楚彩云,朱慧铭,刘秀凤.一些有机物在高压乙醇中无限稀释扩散系数的测定与计算[J].高校化学工程学报,2004,18(4):403-408. 被引量:6
  • 2阎建民,罗先金,R.Krishna.非电解质溶液扩散系数的理论研究评述[J].化工学报,2006,57(10):2263-2269. 被引量:8
  • 3RASTOGI N K, NIRANJAN K. Enhanced mass transfer during osmotic dehydration of high pressure treated pineapple [ J ]. Journal of Food Science, 1998, 63 : 508-511.
  • 4RASTOGI N K, ESHTIA GHI M N, KNORR D. Accelerated mass transfer during osmotic dehydration of high intensify electrical field pulse pretreated carrots [ J ]. Journal of Food Science, 1999, 64 : 1020-1023.
  • 5ADE-OMOWAYE B I O, ANGERSBACH A, TALENS P, KNORR D. Enhanced mase transfer rates during air and osmotic dehydration of red bell peppers after pulsed electric field pre-treatment [ C ]//Proceeding of Iberdsh 2002. Valencia, Spain, 2004.
  • 6TAIWO K A, ANGERSBACH A, KNORR D. Effects of pulsed electric field on quality factors and mass transfer during osmotic dehydration of apples [ J ]. Journal of Food Process Engineering, 2003, 26(1): 31-48.
  • 7FITO P. Modeling of vacuum osmotic dehydration of food [J]. Journal of Food Engineering, 1994, 22: 313-328,.
  • 8ESCRICHE I, GARCL'A-HNCHI R, ANDRE'S A, FI-TO P. Osmotic dehydration of kiwi f ruit (Actinidia chinensis) : fluxes and mass transfer kinetics [ J ]. Journal of Food Process Engineering, 2002, 23(3): 191-205.
  • 9CARCEL J A, BENEDITO J, GOLA5 Y A. Heat and mass transfer in hing-power ultrasonics [ C ]//Proceedings of the 2nd Innovative Foods Centre Conference. Sydney, Australia, 2004.
  • 10MULET A, CARCEL J A,SANJUAAN N. New food drying technologies use of ultrasound [ J ]. Food Science Technology International, 2003, 9(3): 215-221.

共引文献84

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部