期刊文献+

非扩张映像的一类惯性θ方法 被引量:1

A class of inertial θ-methods for nonexpansive mappings
下载PDF
导出
摘要 θ方法是一个基本的求解微分方程的方法,已被广泛用于求解微分方程.介绍了一般的Hilbert空间中非扩张映射T的一类惯性θ方法.这个方法在θ方法原有迭代格式上增加了惯性项,并以隐式方式生成序列.证明了该序列的弱收敛性. Theθ一methods is a fundamental method for solving differential equations and has been extensively used to solve differential equations.In this paper,a class of inertialθ一methods for a general nonexpansive mapping T in a Hilbert space is introduced.This method adds an inertial term in the original iteration format of theθmethod for nonexpansive mapping and generates a sequence in an implicit manner.The weak convergence of the sequence has been proved.
作者 董巧丽 郭文雅 DONG Qiaoli;GUO Wenya(College of Science, Civil Aviation University of China, Tianjin 300300, China)
出处 《河北工业大学学报》 CAS 2018年第1期44-47,共4页 Journal of Hebei University of Technology
基金 天津市智能信号与图象处理重点实验室开放课题(2016ASP-TJ01)
关键词 性加速 θ方法 不动点 非扩张映射 弱收敛 inertial accelerat theta methods fixed point nonexpansive mapping weak convergence
  • 相关文献

参考文献2

二级参考文献11

  • 1C. T. H. Baker. Retarded differential equations [J]. J. Comput. Appl. Math., 2000,125: 309-335.
  • 2A. Bellen, M. Zennaro. Numerical Methods for Delay Differential Equations [M]. Oxford University Press, Oxford, 2003.
  • 3匡跤勋.泛函微分方程的数值处理[M].北京:科学出版社,1999..
  • 4M.Z.Liu, M.N.Spijker. The stability of the methods in the numerical solution of delay differential equations [J]. IMA J.Numer.Anal., 1990, 10: 31-48.
  • 5C.M.Huang, H.Y.Hu, S.F.Li, G.N.Chen. Stability and analysis of one-lag methods for nonlinear delay differential equations [J]. Comput.Appl.Math, 1999,103: 263-279.
  • 6C.Zhang, S.zhou. Nonlinear stability and D-convergence of Runge- Kutta methods for DDEs [J]. J.Comput.Appl.Math, 1997, 85: 225-237.
  • 7李寿佛.一类多步方法的非线性稳定性.高等学校计算数学学报,1987,2:110-118.
  • 8Shoufu Li. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach [J]. spaces (to appear Science In China).
  • 9PULLAN M C. Linear optimal control problems with piecewise analytic solutions[ J], J Math Anal Appl, 1996, 197:207 -226.
  • 10WIENER J. Generalized Solutions of Differential Equations[ M]. Singapore: World Scientific, 1993.

共引文献6

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部