期刊文献+

电场对含空位缺陷硅结构影响的第一性原理研究

First-principle study on effects of electric field on Si vacancy structures
下载PDF
导出
摘要 用分子动力学模拟和第一性原理计算分析方法,研究电场对含空位缺陷硅结构的影响。分子动力学结果表明,硅(100)晶面处的空位数量,总体随着电场强度的增强而增加。当电场在8.90×10~6 V/cm和1.35×10~7 V/cm之间时,空位数达到最大饱和数值10,并保持稳定。第一性原理计算结果表明,能带结构中的缺陷能级等效于降低价带和导带之间的带隙值,导致空位结构中隧穿电流变大。此外,缺陷能级也会导致空位结构中的静态介电常数变大,从而引起电容-电压特性值变大。 By using molecular dynamic simulation method and first principle calculations method,the influence of electric field on silicon with vacancies were investigated.The molecular dynamics results demonstrate that the vacancy quantity in Si(100)surface increases along with the increase of electric field in general.The vacancy quantity reaches and keeps a maximum saturation value of10,when the electric field is between8.90×106V/cm and1.35×107V/cm.The first principle calculations reveal that the tunneling current is enhanced in vacancy structure.It is owing to that the gap value between valence band and conduction band is reduced by the defect levels in band structure.Besides,the static dielectric constant in vacancy structure gets lager,resulting in higher capacitor-voltage value.
作者 秦汉 盛洁 李雷 朱灿焰 毛凌锋 QIN Han;SHENG Jie;LI Lei;ZHU Canyan;MAO Lingfeng
出处 《电子元件与材料》 CAS CSCD 北大核心 2018年第3期10-17,共8页 Electronic Components And Materials
基金 国家自然科学基金项目(61076102 61272105) 江苏省自然科学基金项目(BK2012614) 江苏省高校自然科学研究面上项目(15KJB510027) 江苏省自然科学青年基金项目(BK20170346)
关键词 硅晶体 电场 空位缺陷 带隙 电容-电压特性 隧穿电流密度 silicon crystal electric field vacancy band gap capacitor-voltage characteristic tunneling current density
  • 相关文献

参考文献2

二级参考文献78

  • 1ITRS http://www.itrs.net/.
  • 2Hattori T. Chemical structures of the SiO2/Si interface. Critical Reviews in Solid State and Materials Sciences, 1995, 20(4): 339.
  • 3Jang H J, Appelbaum I. Spin polarized electron transport near the Si/SiO2 interface. Phys Rev Lett, 2009, 103 (11): 117202.
  • 4Watanabe T, Tatsumura K, Ohdomari I. SiO2/Si interface structure and its formation studied by large-scale molecular dynamics simulation. Appl Surf Sci, 2004, 237(1-4): 125.
  • 5Tu Y, TersoffJ. Structure and energetics of the Si-SiO2 interface. Phvs Rev Lett, 2000, 84(19): 4393.
  • 6Ng K O, Vanderbilt D. Structure and oxidation kinetics of the Si(100)-SiO2 interface. Phys Rev B, 1999, 59:10132.
  • 7Van Ginhoven R M, Hjalmarson H P, Edwards A H, et al. Hydrogen release in SIO2: source sites and release mechanisms. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, 250(1/2): 274.
  • 8Carrier P, Lewis L J, Dharma-Wardana M W C. Electron confine- ment and optical enhancement in Si/SiO2 superlattices. Phys Rev B, 2001, 64:195330.
  • 9Herman F, Batra I P. The physics of SiO2 and its interfaces. In: Pantelides S T, ed. Oxford: Pergamon, 1978.
  • 10Yamada Y, Tsuchiya H, Ogawa M. A first principles study on tun- neling current through Si/SiO2/Si structures. J Appl Phys, 2009, 105(8): 083702.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部