期刊文献+

基于性能退化的机械设备寿命预测

下载PDF
导出
摘要 现阶段,机械设备在产品生产过程中各个生产环节之间的联系越来越紧密,一些关键设备结构的功能也越来越复杂,机械设备工作环节不断的变化,机械设备的使用寿命也会逐渐想象,严重的话还会增加一些潜在故障风险。要想从根本上解决这一问题,就应该对机械设备的运行现状进行监测,找出其中的不足,并为其制定有效的解决对策,只有这样才能保证机械设备可以正常的运行下去。基于此,本文对性能退化的机械设备寿命预测进行了简单的分析。
作者 何懿琳
出处 《科技风》 2017年第22期124-124,共1页
  • 相关文献

参考文献2

二级参考文献44

  • 1李凌均,韩捷,郝伟,董辛,何正嘉.支持向量数据描述用于机械设备状态评估研究[J].机械科学与技术,2005,24(12):1426-1429. 被引量:22
  • 2CAESARENDRA W, WIDODO A, YANG B S. Application of relevance vector machine and logistic regression for machine degradation assessment[J]. Mechanical Systems and Signal Processing,2010,24(4) : 1161 1171.
  • 3LIAO Haitao, ZHAO Wenbiao, GUO Huairui. Predicting re- maining useful life of an individual unit using proportional haz- ards model and logistic regression model[C]//Proceedings of Reliability and Maintainability Symposium. Washington, D. C. , USA: IEEE, 2006 : 127-132.
  • 4CAESARENDRA W, WIDODO A, YANG B S. Combination of probability approach and support vector machine towards machine health prognostics[J]. Probabilistic Engineering Me chanics, 2011,26(2) : 165-173.
  • 5WIDODO A, YANG B S. Machine health prognostics using survival probability and support vector machine[J]. Expert Systems with Applications,2011,38(7) :8430 8437.
  • 6TIAN Zhigang. An artificial neural network approach for re- maining useful life prediction of equipments subject to condi tion monitoring F C]//Proceedings of the 8th International Conference on Reliability, Maintainability and Safety. DOI: 10. ll09/ICRMS. 2009. 5270220,2009 : 143-148.
  • 7TIAN Zhigang. A neural network approach for remaining use- ful life prediction utilizing both failure and suspension data ~C~//Proceedings of 2010 Annual, Reliability and Maintain ability Symposium (RAMS). DOI: 10. ll09/RAMS. 2010. 5447975,2010(s) :1-6.
  • 8GEBRAEEL N, LAWLEY M A. A neural network degrada- tion model for computing and updating residual life distribu- tions[J]. IEEE Transactions on Automation Science and Engi- neering,2008,5 (1) :154-163.
  • 9HUANG Runqing, XI Lifeng, LI Xinglin, et al. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J]. Mechanical Sys tems and Signal Processing,2007,21(1) :193-207.
  • 10YU Jianho. A hybrid feature selection scheme and self-organi zing map model for machine health assessment[J]. Applied Soft Computing,2011,11(5) :4041-4054.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部