摘要
本文从椭圆运动的轨道方程出发,结合量子化条件,详细推导了玻尔-索末菲的椭圆轨道的理论,给出了电子的能量以及量子化的半长轴a和半短轴b的表达式。能级公式与玻尔通过对圆轨道得到的结果一致,即能量是量子化的。而电子具有一定能量时,可能的状态n种,即n重简并。
Starting from the orbital equations of elliptical motion and combining with the quantization conditions,the theory of elliptic orbitals of Bohr-Sommerfeld is deduced in detail.The energies of the electron and the quantized half-and semi-minor axes b expression.The energy level formula is consistent with the result Bohr obtained for a circular orbit,that is,the energy is quantized.And electronic has a certain energy,the possible state n species,that is,n heavy degenerate.
作者
武晓霞
展铁政
陈伟丽
侯小娟
WU Xiao-xia;ZHAN Tie-zheng;CHEN Wei-li;HOU Xiao-juan(School of Science,Inner Mongolia University of Science and Technology,Baotou 040014,China)
出处
《科技视界》
2018年第2期64-65,共2页
Science & Technology Vision
关键词
玻尔-索末菲的椭圆轨道
量子化条件
守恒量
Bohr-Sommerfeld elliptical orbit
Quantization conditions
Conservation quantity