期刊文献+

含有免疫作用的SIR传染病模型的动力学性质分析 被引量:2

Analysis of the dynamic properties of SIR epidemic model with immunity
下载PDF
导出
摘要 为预防并控制传染病的传播,在一类复杂情形下带有隔离的SIRS模型基础上,提出了含有免疫作用的SIR传染病模型.根据介值定理和平衡点对应的特征根分析,证明了传染病模型的无病平衡点与地方病平衡点的存在唯一性以及渐近稳定性,通过数值模拟验证了所得结论的准确性. In order to prevent and control the spread of the epidemic disease,gives an SIR epidemic model with immunity based on a complex case of the SIRS model with isolation.According to the analysis of the characteristic roots of the corresponding equilibrium and the intermediate value theorem,proves that the existence and the uniqueness and the asymptotic stability of the SIR epidemic model of free-disease-equilibrium and endemic equilibrium.In addition,the numberical simulation tests the accuracy of the obtained theorem.
作者 高旭 王晶囡 许云中 丁悦航 GAO Xu;WANG Jing-nan;XU Yun-zhong;DING Yue-hang(School of Science,Harbin University of Science and Technology,Harbin 150080,China)
出处 《高师理科学刊》 2018年第2期9-14,共6页 Journal of Science of Teachers'College and University
基金 哈尔滨理工大学大学生创新项目(201512) 黑龙江省教育厅项目(12541168) 黑龙江省青年自然科学基金项目(QC2014C003)
关键词 传染病SIR模型 稳定性 平衡点 数值模拟 SIR epidemic model stability equilibrium numerical simulation
  • 相关文献

参考文献4

二级参考文献17

  • 1石磊,俞军,姚洪兴.具有常数迁入率和非线性传染率βI^pS^q的SI模型分析[J].高校应用数学学报(A辑),2008,23(1):7-12. 被引量:2
  • 2ZHOU Tao,FU Zhongqian,WANG Binghong.Epidemic dynamics on complex networks[J].Progress in Natural Science:Materials International,2006,16(5):452-457. 被引量:36
  • 3杨建雅,张凤琴.一类具有垂直传染的SIR传染病模型[J].生物数学学报,2006,21(3):341-344. 被引量:22
  • 4Hethcote H W. The mathematics of infectious disease [J]. SIAM Review (S0036-1445), 2000, 42(2): 599-653.
  • 5Li J, Ma Z. Qualitative analyses of SIS epidemic model with vaccination and varying total population size [J]. Mathematical and computer modeling (S0895-7177), 2002, 35(11-12): 1235-1243.
  • 6Mei Song, Wanbiao Ma, Yastthiro Takeuchi. Permanence of a delayed SIR epidemic model with density dependent birth rate [J]. Journal of Computational and Applied Mathematics (S0377-0427), 2007, 201(2) 389-394.
  • 7Guirong Jiang, Qigui Yang. Bifurcation analysis in an SIR epidemic model with birth pulse and purse vaccination [J]. Applied Mathematics and Computation (S0096-3003), 2009, 215(3): 1035-1046.
  • 8Naoki Yoshida, Tadayuki Hara. Global stability of a delayed SIR epidemic model with density dependent birth and death rates [J]. Journal of Computational and Applied Mathematics (S0377-0427), 2007, 201(2): 339-347.
  • 9Franceschetti A, Pugliese, A. Threshold behavior of a SIR epidemic model with age structure and immigration [J]. Journal of Mathematical Biology (S0303-6812), 2008, 57(1): 1-27.
  • 10Hui-Ming Wei, Xue-Zhi Li, Maia Martcheva. An epidemic model of a vector-borne disease with direct transmission and time delay [J]. J. Math. Anal. Appl. (S0022-247X), 2008, 342(2): 895-908.

共引文献43

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部