期刊文献+

具反馈控制的一方不能独立生存偏利合作系统的稳定性 被引量:2

The stability of a commensal system that can′t survive independently by one party with feedback controls
下载PDF
导出
摘要 研究具反馈控制的一方不能独立生存的两种群偏利合作系统正平衡点和边界平衡点的稳定性,通过构造适当的Lyapunov函数分别得到保证正平衡点和边界平衡点全局渐近稳定的充分性条件,并通过MATLAB进行数值模拟.研究结果表明,在原系统存在正平衡点时,适当的反馈控制变量仅改变正平衡点的位置,不会改变正平衡点的稳定性;但不适当的反馈控制变量将导致系统中不能独立生存的种群绝灭. A two species commensal symbiosis model with feedback controls is studied.By constructing a suitable Lyapunov function,the sufficient conditions for ensuring the global asymptotic stability of the positive equilibrium point and the boundary equilibrium point are obtained.And the numerical simulation is carried out through MATLAB.Research results show that if the original system has a positive equilibrium point.The suitable feedback control variables only change the position of the positive equilibrium point and do not change the stability of the positive equilibrium point.But unsuitable feedback control variables will lead to the extinction of the population that can not survive independently in the system.
作者 杨英钟 王宽程 Yang Yingzhong;Wang Kuancheng(Minnan University of Science and Technology, Department of Information Management,Quanzhou 362700, China)
出处 《纯粹数学与应用数学》 2018年第1期73-80,共8页 Pure and Applied Mathematics
基金 福建省中青年教师教育科研项目(JAT170739)
关键词 反馈控制 偏利合作系统 LYAPUNOV函数 全局渐近稳定 feedback controls commensal symbiosis model Lyapunov function global asymptotic stability
  • 相关文献

参考文献6

二级参考文献33

  • 1孙德献,陈凤德,陈晓星.具有时滞和反馈控制的Logistic增长模型的正周期解[J].生物数学学报,2005,20(4):447-455. 被引量:10
  • 2丁孝全,程述汉.具反馈控制的时滞阶段结构种群模型的稳定性[J].生物数学学报,2006,21(2):225-232. 被引量:16
  • 3K Gopalsamy,P X Weng. Global Anractivity in a Competition System with Feedback Controls [ J ]. Comput Math Appl,2003, 45 : 665-676.
  • 4H X Hu,Z D Teng, S J Gao. Extinction in Non-autonomous Lotka-Volterra Competitive System with Pure-delay and Feedback Controls [ J ]. Nonlinear Anal Real World Appl,2009,10 -2508- 2520.
  • 5Z Li, M H Han,F D Chen. Influence of Feedback Controls on an Autonomous Lotka-Voherra Competitive System with Infinite Delays[ J ]. Nonlinear Anal Real World App1,2013 ,14 :402413.
  • 6F D Chen. Global Asymptotic Stability in n-species Non-autonomous Lotka-Volterra Competitive Systems with Infinite Delays and Feedback Control [ J ]. Appl Math Comput ,2005,170 ( 2 ) : 1452-1468.
  • 7F D Chen. Global Stability of a Single Species Model with Feedback Control and Distributed Time Delay [ J ]. Appl Math Comput, 2006,178 (2) :474479.
  • 8F D Chen, J H Yang, L J Chen. Note on the Persistent Property of a Feedback Control System with Delays [ J ]. Nonlinear Anal Real World App1,2010,11 ( 2 ) : 1061-1066.
  • 9Gopalsamy K, WENG Peixuan. Global attractivity in a competition system with feedback controls[J-. Comput. Math. Appl. , 2003,45 : 665-676.
  • 10LI Zhong, HAN Maoan, CHEN Fengde. Influence of feedback controls on an autonomous Lotka-Volterracompetitive system with infinite delays[J]. Nonlinear Anal. : Real World Appl. , 2013,14.. 402-413.

共引文献24

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部