摘要
针对含光伏,微型燃气轮机组等分布式能源的冷热电联供微网系统,研究源荷双侧不确定情况下多类型能量调度动态优化问题.首先,针对光伏出力和异类负荷的随机不确定性,将光伏和负荷的变化描述为连续马尔科夫过程;然后以决策时刻,负荷需求以及分布式能源出力的离散值为状态分量,以微型燃气轮机组启停行动和储能充放行动为动作分量,在分时电价模式下,以降低包括购电成本,燃料代价,启停代价等在内的日运行成本为调度优化目标,将源荷不确定冷热电联供微网系统调度动态优化问题描述为马尔科夫决策过程模型,并引入强化学习方法对该问题进行策略求解.最后通过算例仿真对不同策略进行了比较,验证了优化方法的有效性.
The dynamic dispatch optimization of the combined cooling,heat and power(CCHP)microgrid system with uncertain renewable sources and demands is focused in this paper.Firstly,the variations of photovoltaic and loads are described as continuous Markov processes considering their random properties.Then,define state vector of the system which consists of decision epoch,multiple load demands level,and outputs level of distributed energy sources(DESs),and the action vector which consists of the actions of micro turbines(MT)and storages.The time-of-use electricity price mode is applied in the system to minimize operating cost including electricity purchasing cost,fuel cost and starting-stopping cost.The dynamic optimal dispatch problem for CCHP microgrid system is described as a discrete Markov decision process(MDP),and a reinforcement learning method is adopted to obtain the optimal or suboptimal policy.Different policies are compared in simulation part and it shows that optimal policy can achieve a better performance to reduce the daily operating cost of the system.At last,simulation experiments including the comparison of different policies are performed to validate the effectiveness of the method.
作者
李怡瑾
唐昊
吕凯
郭晓蕊
许丹
LI Yi-jin;TANG Hao;Lü Kai;GUO Xiao-rui;XU Dan(School of Electrical Engineering and Automation, Hefei University of Technology, Hefei Anhui 230009, China;Power Automation Department, China Electric Power Research Institute (Nanjing), Nanjing Jiangsu 210003, China;Power Automation Department, China Electric Power Research Institute (Beijing), Beijing 100192, China)
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2018年第1期56-64,共9页
Control Theory & Applications
基金
国家重点研发计划(2017YFB0902600)
国家自然科学基金项目(61573126)资助~~
关键词
冷热电联供微网
能量调度
马尔科夫过程
强化学习
combined cooling, heat and power microgrid system
energy dispatch
Markov process
reinforcement learning