期刊文献+

Research of the DBN Algorithm Based on Multi-innovation Theory and Application of Social Computing

下载PDF
导出
摘要 Aimed at the problems of small gradient, low learning rate, slow convergence error when the DBN using back-propagation process to fix the network connection weight and bias, proposing a new algorithm that combines with multi-innovation theory to improve standard DBN algorithm, that is the multi-innovation DBN(MI-DBN). It sets up a new model of back-propagation process in DBN algorithm, making the use of single innovation in previous algorithm extend to the use of innovation of the preceding multiple period, thus increasing convergence rate of error largely. To study the application of the algorithm in the social computing, and recognize the meaningful information about the handwritten numbers in social networking images. This paper compares MI-DBN algorithm with other representative classifiers through experiments. The result shows that MI-DBN algorithm, comparing with other representative classifiers, has a faster convergence rate and a smaller error for MNIST dataset recognition. And handwritten numbers on the image also have a precise degree of recognition.
出处 《国际计算机前沿大会会议论文集》 2016年第1期147-149,共3页 International Conference of Pioneering Computer Scientists, Engineers and Educators(ICPCSEE)
  • 相关文献

参考文献2

二级参考文献18

  • 1丁锋,陈通文,萧德云.非均匀周期采样多率系统的一种辨识方法[J].电子学报,2004,32(9):1414-1420. 被引量:33
  • 2[9]MOUSTAFA K A F. Identification of stochastic time-varying systems[J]. IEE Proc, Part D, 1983,130(4): 137 - 142.
  • 3[10]GOODWIN G C, SIN K S. Adaptive filtering perdiction and control[J]. Englewood Cliffs, New Jersey: Prentice-hall,Inc., 1984.
  • 4Mo S, Chen X, Zhao J, et al. A two-stage method for identification of dual-rate systems with fast input and very slow output[J]. Industrial and Engineering Chemistry Research, 2008, 48(4): 1980-1988.
  • 5Ding F, Liu P X, Yang H Z. Parameter identification and intersample output estimation for dual-rate systems[J]. IEEE Trans on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2008, 38(4): 966-975.
  • 6Liu X, Marquez H J, Lin Y. Input-to-state stabilization for nonlinear dual-rate sampled-data systems via approximate discrete-time model[J]. Automatica, 2008, 44(12): 3157- 3161.
  • 7Stoica E Sandgren N. Spectral analysis of irregularly- sampled data: Paralleling the regularly-sampled data approaches[J]. Digital Signal Processing, 2006, 16(6): 712-734.
  • 8Raghavan H, Tangirala A, Gopaluni R B, et al. Identification of chemical process with irregular output sampling[J]. Control Engineering Practice, 2006, 14(5): 467-480.
  • 9Li W, Han Z, Shah S L. Subspace identification for FDI in systems with non-uniformly sampled multirate data[J]. Automatica, 2006, 42(4): 619-627.
  • 10Li W, Shah S L, Xiao D Y. Kalman filters in non-uniformly sampled multirate systems: For FDI and beyond[J]. Automatica, 2008, 44(1): 199-208.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部